Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>3-Amino-4-methylpentanoic acid

3-Amino-4-methylpentanoic acid Sale

(Synonyms: 3-氨基-4-甲基戊酸) 目录号 : GC30719

3-Amino-4-methylpentanoic acid (beta-Leucine, DL-Homovaline, DL-beta-leucine, beta-Aminoisocaproic acid) is a human metabolite.

3-Amino-4-methylpentanoic acid Chemical Structure

Cas No.:5699-54-7

规格 价格 库存 购买数量
100mg
¥536.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

3-Amino-4-methylpentanoic acid (beta-Leucine, DL-Homovaline, DL-beta-leucine, beta-Aminoisocaproic acid) is a human metabolite.

Chemical Properties

Cas No. 5699-54-7 SDF
别名 3-氨基-4-甲基戊酸
Canonical SMILES CC(C)C(N)CC(O)=O
分子式 C6H13NO2 分子量 131.18
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 7.6231 mL 38.1156 mL 76.2311 mL
5 mM 1.5246 mL 7.6231 mL 15.2462 mL
10 mM 0.7623 mL 3.8116 mL 7.6231 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Beta-amino acids: mammalian metabolism and utility as alpha-amino acid analogues

Regulation of amino acid-sensitive TOR signaling by leucine analogues in adipocytes

In adipocytes, amino acids stimulate the target of rapamycin (TOR) signaling pathway leading to phosphorylation of the translational repressor, eIF-4E binding protein-I (4E-BP1), and ribosomal protein S6. L-leucine is the primary mediator of these effects. The structure-activity relationships of a putative L-leucine recognition site in adipocytes (LeuR(A)) that regulates TOR activity were analyzed by examining the effects of leucine analogues on the rapamycin-sensitive phosphorylation of the translational repressor, eIF-4E binding protein-I (4E-BP1), an index of TOR activity. Several amino acids that are structurally related to leucine strongly stimulated 4E-BP1 phosphorylation at concentrations greater than the EC(50) value for leucine. The order of potency was leucine > norleucine > threo-L-beta-hydroxyleucine approximately Ile > Met approximately Val. Other structural analogues of leucine, such as H-alpha-methyl-D/L-leucine, S-(-)-2-amino-4-pentenoic acid, and 3-amino-4-methylpentanoic acid, possessed only weak agonist activity. However, other leucine-related compounds that are known agonists, antagonists, or ligands of other leucine binding/recognition sites did not affect 4E-BP1 phosphorylation. We conclude from the data that small lipophilic modifications of the leucine R group and alpha-hydrogen may be tolerated for agonist activity; however, leucine analogues with a modified amino group, a modified carboxylic group, charged R groups, or bulkier aliphatic R groups do not seem to possess significant agonist activity. Furthermore, the leucine recognition site that regulates TOR signaling in adipocytes appears to be different from the following: (1) a leucine receptor that regulates macroautophagy in liver, (2) a leucine recognition site that regulates TOR signaling in H4IIE hepatocytes, (3) leucyl tRNA or leucyl tRNA synthetase, (4) the gabapentin-sensitive leucine transaminase, or (5) the system L-amino acid transporter.

Direct high-performance liquid chromatographic enantioseparation of apolar beta-amino acids on a quinine-derived chiral anion-exchanger stationary phase

A quinine-derived chiral anion-exchanger stationary phase was applied for the direct high-performance liquid chromatographic separation of the enantiomers of N-protected unusual beta-amino acids, i.e. 3-aminobutanoic acid, 3-aminopentanoic acid, 3-amino-4-methylpentanoic acid, 3-amino-4,4-dimethylpentanoic acid, 3-amino-4-methylhexanoic acid, 3-amino-4-ethylhexanoic acid, 3-amino-3-cyclohexylpropanoic acid, 3-amino-3-(3-cyclohexen-1-yl)propanoic acid and 3-amino-3-phenylpropanoic acid. The readily prepared N-2,4-dinitrophenyl derivatives were well separable, with good efficiency and high resolution. The chromatographic conditions (eluent composition, pH and buffer concentration) were varied to achieve optimal separation. In some cases, the elution sequences of the enantiomers of the derivatives were determined.

Lactiplantibacillus plantarum-12 Alleviates Inflammation and Colon Cancer Symptoms in AOM/DSS-Treated Mice through Modulating the Intestinal Microbiome and Metabolome

In our previous research, Lactiplantibacillus plantarum-12 alleviated inflammation in dextran sodium sulfate (DSS)-induced mice by regulating intestinal microbiota and preventing colon shortening (p < 0.05). The purpose of the present study was to evaluate whether L. plantarum-12 could ameliorate the colon cancer symptoms of azoxymethane (AOM)/DSS-treated C57BL/6 mice. The results showed that L. plantarum-12 alleviated colonic shortening (from 7.43 ± 0.15 to 8.23 ± 0.25) and weight loss (from 25.92 ± 0.21 to 27.75 ± 0.88) in AOM/DSS-treated mice. L. plantarum-12 oral administration down-regulated pro-inflammatory factors TNF-α (from 350.41 ± 15.80 to 247.72 ± 21.91), IL-8 (from 322.19 ± 11.83 to 226.08 ± 22.06), and IL-1β (111.43 ± 8.14 to 56.90 ± 2.70) levels and up-regulated anti-inflammatory factor IL-10 (from 126.08 ± 24.92 to 275.89 ± 21.87) level of AOM/DSS-treated mice. L. plantarum-12 oral administration restored the intestinal microbiota dysbiosis of the AOM/DSS treated mice by up-regulating beneficial Muribaculaceae, Lactobacillaceae, and Bifidobacteriaceae levels and down-regulating pathogenic Proteobacteria, Desulfovibrionaceae, and Erysipelotrichaceae levels. As a result, the fecal metabolites of the AOM/DSS-treated mice were altered, including xanthosine, uridine, 3,4-methylenesebacic acid, 3-hydroxytetradecanedioic acid, 4-hydroxyhexanoylglycine, beta-leucine, and glycitein, by L. plantarum-12 oral administration. Furthermore, L. plantarum-12 oral administration significantly ameliorated the colon injury of the AOM/DSS-treated mice by enhancing colonic tight junction protein level and promoting tumor cells death via down-regulating PCNA (proliferating cell nuclear antigen) and up-regulating pro-apoptotic Bax. (p < 0.05). Taken together, L. plantarum-12 oral administration could ameliorate the colon cancer burden and inflammation of AOM-DSS-treated C57BL/6 mice through regulating the intestinal microbiota, manipulating fecal metabolites, enhancing colon barrier function, and inhibiting NF-κB signaling. These results suggest that L. plantarum-12 might be an excellent probiotic candidate for the prevention of colon cancer.

Conservation and Diversity in Allosteric Fingerprints of Proteins for Evolutionary-inspired Engineering and Design

Hand-in-hand work of physics and evolution delivered protein universe with diversity of forms, sizes, and functions. Pervasiveness and advantageous traits of allostery made it an important component of the protein function regulation, calling for thorough investigation of its structural determinants and evolution. Learning directly from nature, we explored here allosteric communication in several major folds and repeat proteins, including α/β and β-barrels, β-propellers, Ig-like fold, ankyrin and α/β leucine-rich repeat proteins, which provide structural platforms for many different enzymatic and signalling functions. We obtained a picture of conserved allosteric communication characteristic in different fold types, modifications of the structure-driven signalling patterns via sequence-determined divergence to specific functions, as well as emergence and potential diversification of allosteric regulation in multi-domain proteins and oligomeric assemblies. Our observations will be instrumental in facilitating the engineering and de novo design of proteins with allosterically regulated functions, including development of therapeutic biologics. In particular, results described here may guide the identification of the optimal structural platforms (e.g. fold type, size, and oligomerization states) and the types of diversifications/perturbations, such as mutations, effector binding, and order-disorder transition. The tunable allosteric linkage across distant regions can be used as a pivotal component in the design/engineering of modular biological systems beyond the traditional scaffolding function.