Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>2-Phenylacetaldehyde

2-Phenylacetaldehyde Sale

(Synonyms: 苯乙醛) 目录号 : GC60018

Phenylacetaldehyde (Hyacinthin, Phenylethanal) is an organic compound used in the synthesis of fragrances and polymers.

2-Phenylacetaldehyde Chemical Structure

Cas No.:122-78-1

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥385.00
现货
500mg
¥350.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Phenylacetaldehyde (Hyacinthin, Phenylethanal) is an organic compound used in the synthesis of fragrances and polymers.

Chemical Properties

Cas No. 122-78-1 SDF
别名 苯乙醛
Canonical SMILES O=CCC1=CC=CC=C1
分子式 C8H8O 分子量 120.15
溶解度 储存条件 4°C,Air sensitive/Stab.with 0.01% citric acid
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 8.3229 mL 41.6146 mL 83.2293 mL
5 mM 1.6646 mL 8.3229 mL 16.6459 mL
10 mM 0.8323 mL 4.1615 mL 8.3229 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol

Phytochemistry 2007 Nov;68(21):2660-9.PMID:17644147DOI:10.1016/j.phytochem.2007.06.005.

The volatile compounds, 2-Phenylacetaldehyde and 2-phenylethanol, are important for the aroma and flavor of many foods, such as ripe tomato fruits, and are also major constituents of scent of many flowers, most notably roses. While much work has gone into elucidating the pathway for 2-phenylethanol synthesis in bacteria and yeast, the pathways for synthesis in plants are not well characterized. We have identified two tomato enzymes (LePAR1 and LePAR2) that catalyze the conversion of 2-Phenylacetaldehyde to 2-phenylethanol: LePAR1, a member of the large and diverse short-chain dehydrogenase/reductase family, strongly prefers 2-Phenylacetaldehyde to its shorter and longer homologues (benzaldehyde and cinnamaldehyde, respectively) and does not catalyze the reverse reaction at a measurable rate; LePAR2, however, has similar affinity for 2-Phenylacetaldehyde, benzaldehyde and cinnamaldehyde. To confirm the activity of these enzymes in vivo, LePAR1 and LePAR2 cDNAs were individually expressed constitutively in petunia. While wild type petunia flowers emit relatively high levels of 2-Phenylacetaldehyde and lower levels of 2-phenylethanol, flowers from the transgenic plants expressing LePAR1 or LePAR2 had significantly higher levels of 2-phenylethanol and lower levels of 2-Phenylacetaldehyde. The in vivo alteration of volatile emissions is an important step toward altering aroma volatiles in plants.

Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-Phenylacetaldehyde

Proc Natl Acad Sci U S A 2006 May 23;103(21):8287-92.PMID:16698923DOI:10.1073/pnas.0602469103.

An important phenylalanine-derived volatile compound produced by plants is 2-phenylethanol. It is a major contributor to flavor in many foods, including fresh fruits, such as tomato, and an insect-attracting scent in roses and many other flowers. Despite the centrality of 2-phenylethanol to flavor and fragrance, the plant genes responsible for its synthesis have not been identified. Here, we describe a biosynthetic pathway for 2-phenylethanol and other phenylalanine-derived volatiles in tomato fruits and a small family of decarboxylases (LeAADC1A, LeAADC1B, and LeAADC2) that can mediate that pathway's first step. These enzymes each catalyze conversion of phenylalanine to phenethylamine and tyrosine to tyramine. Although tyrosine is the preferred substrate in vitro, phenylalanine levels in tomato fruits far exceed those of tyrosine, indicating that phenylalanine is a physiological substrate. Consistent with this view, overexpression of either LeAADC1A or LeAADC2 in transgenic tomato plants resulted in fruits with up to 10-fold increased emissions of the products of the pathway, including 2-Phenylacetaldehyde, 2-phenylethanol, and 1-nitro-2-phenylethane. Further, antisense reduction of LeAADC2 significantly reduced emissions of these volatiles. Besides establishing a biosynthetic route, these results show that it is possible to change phenylalanine-based flavor and aroma volatiles in plants by manipulating expression of a single gene.

Separate Pathways Contribute to the Herbivore-Induced Formation of 2-Phenylethanol in Poplar

Plant Physiol 2019 Jun;180(2):767-782.PMID:30846485DOI:10.1104/pp.19.00059.

Upon herbivory, the tree species western balsam poplar (Populus trichocarpa) produces a variety of Phe-derived metabolites, including 2-phenylethylamine, 2-phenylethanol, and 2-phenylethyl-β-d-glucopyranoside. To investigate the formation of these potential defense compounds, we functionally characterized aromatic l-amino acid decarboxylases (AADCs) and aromatic aldehyde synthases (AASs), which play important roles in the biosynthesis of specialized aromatic metabolites in other plants. Heterologous expression in Escherichia coli and Nicotiana benthamiana showed that all five AADC/AAS genes identified in the P trichocarpa genome encode active enzymes. However, only two genes, PtAADC1 and PtAAS1, were significantly upregulated after leaf herbivory. Despite a sequence similarity of ∼96%, PtAADC1 and PtAAS1 showed different enzymatic functions and converted Phe into 2-phenylethylamine and 2-Phenylacetaldehyde, respectively. The activities of both enzymes were interconvertible by switching a single amino acid residue in their active sites. A survey of putative AADC/AAS gene pairs in the genomes of other plants suggests an independent evolution of this function-determining residue in different plant families. RNA interference -mediated-downregulation of AADC1 in gray poplar (Populus × canescens) resulted in decreased accumulation of 2-phenylethylamine and 2-phenylethyl-β-d-glucopyranoside, whereas the emission of 2-phenylethanol was not influenced. To investigate the last step of 2-phenylethanol formation, we identified and characterized two P trichocarpa short-chain dehydrogenases, PtPAR1 and PtPAR2, which were able to reduce 2-Phenylacetaldehyde to 2-phenylethanol in vitro. In summary, 2-phenylethanol and its glucoside may be formed in multiple ways in poplar. Our data indicate that PtAADC1 controls the herbivore-induced formation of 2-phenylethylamine and 2-phenylethyl-β-d-glucopyranoside in planta, whereas PtAAS1 likely contributes to the herbivore-induced emission of 2-phenylethanol.

2-Chloro-2-phenylethylamine as a mechanistic probe and active site-directed inhibitor of monoamine oxidase from bovine liver mitochondria

Arch Biochem Biophys 1987 Jun;255(2):400-8.PMID:3592682DOI:10.1016/0003-9861(87)90408-5.

The reaction of 2-chloro-2-phenylethylamine with monoamine oxidase B was investigated to study the mechanism of this enzyme and its inactivation by this compound. 2-Chloro-2-phenylethylamine is a substrate with a Km of 30 microM and a turnover number of 80 min-1 at pH 6.5 at 30 degrees C. Incubation of 2-chloro-2-phenylethylamine with the enzyme led to the normal oxidation product, 2-chloro-2-phenylacetaldehyde, but only traces (0.25 mol%) of 2-Phenylacetaldehyde, the product anticipated if the oxidation of substrate involved a stabilized carbanion at C-1 and elimination of chloride ion. These data suggest that a carbanion is not a likely intermediate in the oxidation of amines by monoamine oxidase. During the mechanistic studies we noted time-dependent inactivation of monoamine oxidase B by 2-chloro-2-phenylethylamine under both aerobic and anaerobic conditions. Inactivation was not reversible. Aerobically 2-chloro-2-phenylethylamine is oxidized to 2-chloro-2-phenylacetaldehyde which covalently modifies the enzyme (tau 1/2 = 40 min). Benzyl alcohol, a substrate analog, gives substantial protection against inactivation under aerobic conditions (tau 1/2 = 320 min), suggesting that an active site residue is modified. Anaerobic reaction of 2-chloro-2-phenylethylamine with monoamine oxidase B probably proceeds by direct alkylation of an enzyme residue (tau 1/2 = 140 min). Reduction with [3H]NaBH4 of the inactivated enzyme gave from 0 to 0.7 and from 4.5 to 5.6 mol of hydride incorporation for enzyme inactivated anaerobically and aerobically, respectively. The latter results are in agreement with inactivation by unmodified inhibitor and inactivation by oxidized inhibitor for the anaerobic and aerobic reactions, respectively. It is suggested that 2-chloro-2-phenylethylamine or its oxidation product 2-chloro-2-phenylacetaldehyde may serve as an active site affinity reagent for monoamine oxidase.

De novo Synthesis of 2-phenylethanol from Glucose by Metabolically Engineered Escherichia coli

J Ind Microbiol Biotechnol 2023 Feb 13;49(6):kuac026.PMID:36370454DOI:10.1093/jimb/kuac026.

2-Phenylethanol (2- PE) is an aromatic alcohol with wide applications, but there is still no efficient microbial cell factory for 2-PE based on Escherichia coli. In this study, we constructed a metabolically engineered E. coli capable of de novo synthesis of 2-PE from glucose. Firstly, the heterologous styrene-derived and Ehrlich pathways were individually constructed in an L-Phe producer. The results showed that the Ehrlich pathway was better suited to the host than the styrene-derived pathway, resulting in a higher 2-PE titer of ∼0.76 ± 0.02 g/L after 72 h of shake flask fermentation. Furthermore, the phenylacetic acid synthase encoded by feaB was deleted to decrease the consumption of 2-Phenylacetaldehyde, and the 2-PE titer increased to 1.75 ± 0.08 g/L. As phosphoenolpyruvate (PEP) is an important precursor for L-Phe synthesis, both the crr and pykF genes were knocked out, leading to ∼35% increase of the 2-PE titer, which reached 2.36 ± 0.06 g/L. Finally, a plasmid-free engineered strain was constructed based on the Ehrlich pathway by integrating multiple ARO10 cassettes (encoding phenylpyruvate decarboxylases) and overexpressing the yjgB gene. The engineered strain produced 2.28 ± 0.20 g/L of 2-PE with a yield of 0.076 g/g glucose and productivity of 0.048 g/L/h. To our best knowledge, this is the highest titer and productivity ever reported for the de novo synthesis of 2-PE in E. coli. In a 5-L fermenter, the 2-PE titer reached 2.15 g/L after 32 h of fermentation, suggesting that the strain has the potential to efficiently produce higher 2-PE titers following further fermentation optimization.