Home>>Signaling Pathways>> Others>>2-Methylhexanoic acid

2-Methylhexanoic acid Sale

(Synonyms: 2-甲基己酸) 目录号 : GC62762

2-Methylhexanoic acid is a flavouring ingredient.

2-Methylhexanoic acid Chemical Structure

Cas No.:4536-23-6

规格 价格 库存 购买数量
5 g
¥450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

2-Methylhexanoic acid is a flavouring ingredient.

Chemical Properties

Cas No. 4536-23-6 SDF
别名 2-甲基己酸
分子式 C7H14O2 分子量 130.18
溶解度 DMSO : 100mg/mL 储存条件 Store at 2-8°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 7.6817 mL 38.4084 mL 76.8167 mL
5 mM 1.5363 mL 7.6817 mL 15.3633 mL
10 mM 0.7682 mL 3.8408 mL 7.6817 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Sustainable Biocatalytic Procedure for Obtaining New Branched Acid Esters

Materials (Basel) 2021 Nov 13;14(22):6847.PMID:34832249DOI:10.3390/ma14226847.

Biocatalytic synthesis of 2-ethylhexyl 2-methylhexanoate is described in this work for the first time. This branched-chain ester is suitable for use at low temperatures in numerous applications. The immobilized lipase Novozym® 435 has demonstrated its ability to catalyze the ester synthesis from 2-ethylhexanol and 2-Methylhexanoic acid in a solvent-free medium. The high reaction times that are required result in a loss of alcohol by evaporation, which must be compensated for with an excess of this substrate if high conversions are to be achieved. Therefore, two strategies are established: 70 °C with a 10% excess of alcohol, which requires a longer operating time and provides conversions of 97%, and 80 °C with a 20% excess of alcohol, which allows for the achievement of a 99% conversion in a shorter time. The optimal reaction conditions have been chosen based on reusability of the enzyme, process productivity, green metrics and preliminary economic study. When the synthesis is carried out under the best conditions (70 °C, 10% molar excess of alcohol and six uses of the immobilized enzyme) a productivity of 203.84 kg product × kg biocatalyst-1 is attained. The biocatalytic procedure matches many of the objectives of "green chemistry" and is suitable to be scaled up and used in industrial manufacturing.

Separation and conductimetric detection of C1-C7 aliphatic monocarboxylic acids and C1-C7 aliphatic monoamines on unfunctionized polymethacrylate resin columns

J Chromatogr A 2004 Jun 11;1039(1-2):171-7.PMID:15250420DOI:10.1016/j.chroma.2003.12.066.

The application of unfunctionized polymethacrylate resin (TSKgel G3000PWXL) as a stationary phase in liquid chromatography with conductimetric detection for C1-C7 aliphatic monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, 3,3-dimethylbutyric acid, 4-methylvaleric acid, hexanoic acid, 2-Methylhexanoic acid, 5-methylhexanoic acid and heptanoic acid) and C1-C7 aliphatic monoamines (methylamine, ethylamine, propylamine, isobutylamine, butylamine, isoamylamine, amylamine, 1,3-dimethylbutylamine, hexylamine, 2-heptylamine and heptylamine) was attempted with C8 aliphatic monocarboxylic acids (2-propylvaleric acid, 2-ethylhexanoic acid, 2-methylheptanoic acid and octanoic acid) and C8 aliphatic monoamines (1,5-dimethylhexylamine, 2-ethylhexylamine, 1-methylheptylamine and octylamine) as eluents, respectively. Using 1 mM 2-methylheptanoic acid at pH 4.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 carboxylic acids were achieved on a TSKgel G3000PWXL column (150 mm x 6 mm i.d.) in 60 min. Using 2 mM octylamine at pH 11.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 amines were also achieved on the TSKgel G3000PWXL column in 60 min.

Natural organic compounds as alternative to methyl bromide for nematodes control

J Environ Sci Health B 2008 Nov;43(8):680-5.PMID:18941991DOI:10.1080/03601230802388751.

Thirty-three organic acids and furfural metabolites were examined for their nematicidal activity against plant-parasitic, free-living and predacious nematodes. Propionic acid, 2-Methylhexanoic acid, lactic acid, maleic acid, and furic acid were the most effective nematicides among normal chain organic acids, branched organic acids, hydroxy/keto-acids, dicarboxylic acids and furfural metabolites, respectively. Seven of the tested compounds were found to have more than 90% mortality thus designating them as highly active nematicides. Of the highly active tested compounds, an average octanol/water log P of 0.97 was observed with a range from 0.28 to 2.64, and a Henry's Law constant averaging 2.6 x 10(- 7) atm.m3/mole. Tested chemicals with minor or low nematicidal activity showed an average log P of 1.76 with a range from 0.15 to 3.42 and a Henry's Law constant averaging 16.6 x 10(- 7) atm.m3/mole.

Application of polymethacrylate resin as stationary phase in liquid chromatography with UV detection for C1-C7 aliphatic monocarboxylic acids and C1-C7 aliphatic monoamines

J Chromatogr A 2004 Jun 11;1039(1-2):161-9.PMID:15250419DOI:10.1016/j.chroma.2003.12.046.

The application of unfunctionized polymethacrylate resin (TSKgel G3000PWXL) as a stationary phase in liquid chromatography with UV detection for C1-C7 aliphatic monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, 3,3-dimethylbutyric acid, 4-methylvaleric acid, hexanoic acid, 2-Methylhexanoic acid, 5-methylhexanoic acid and heptanoic acid) and C1-C7 aliphatic monoamines (methylamine, ethylamine, propylamine, isobutylamine, butylamine, isoamylamine, amylamine, 1,3-dimethylbutylamine, hexylamine, 2-heptylamine and heptylamine) was carried out. Using dilute sulfuric acid as the eluent, the TSKgel G3000PWXL, resin acted as an advanced stationary phase for these C1-C7 carboxylic acids. Excellent simultaneous separation and symmetrical peaks for these C1-C7 carboxylic acids were achieved on a TSKgel G3000PWXL column (150 mm x 6 mm i.d.) in 60 min with 0.25 mM sulfuric acid containing 1 mM 2-methylheptanoic acid at pH 3.3 as the eluent. Using dilute sodium hydroxide as the eluent, the TSKgel G3000PWXL resin also behaved as an advanced stationary phase for these C1-C7 amines. Excellent simultaneous separation and good peaks for these C1-C7 amines were achieved on the TSKgel G3000PWXL column in 60 min with 10 mM sodium hydroxide containing 0.5 mM 1-methylheptylamine at pH 11.9 as the eluent.

Evaluation of an alternative in vitro test battery for detecting reproductive toxicants in a grouping context

Reprod Toxicol 2015 Aug 1;55:11-9.PMID:25461900DOI:10.1016/j.reprotox.2014.10.003.

Previously we showed a battery consisting of CALUX transcriptional activation assays, the ReProGlo assay, and the embryonic stem cell test, and zebrafish embryotoxicity assay as 'apical' tests to correctly predict developmental toxicity for 11 out of 12 compounds, and to explain the one false negative [7]. Here we report on applying this battery within the context of grouping and read across, put forward as a potential tool to fill data gaps and avoid animal testing, to distinguish in vivo non- or weak developmental toxicants from potent developmental toxicants within groups of structural analogs. The battery correctly distinguished 2-Methylhexanoic acid, monomethyl phthalate, and monobutyltin trichloride as non- or weak developmental toxicants from structurally related developmental toxicants valproic acid, mono-ethylhexyl phthalate, and tributyltin chloride, respectively, and, therefore, holds promise as a biological verification model in grouping and read across approaches. The relevance of toxicokinetic information is indicated.