Home>>Infectious Disease>> Bacterial Diseases>> Pneumonia>>1-Palmitoyl Lysophosphatidic Acid

1-Palmitoyl Lysophosphatidic Acid Sale

(Synonyms: 1-Palmitoyl LPA) 目录号 : GC42020

A lysophosphatidic acid analog

1-Palmitoyl Lysophosphatidic Acid Chemical Structure

Cas No.:22002-85-3

规格 价格 库存 购买数量
1mg
¥531.00
现货
5mg
¥2,399.00
现货
10mg
¥4,249.00
现货
25mg
¥9,302.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

1-Palmitoyl lysophosphatidic acid (1-Palmitoyl LPA) is a LPA analog containing palmitic acid at the sn-1 position. LPA binds to one of at least five different G protein-coupled receptors to mediate a variety of biological responses including cell proliferation, smooth muscle contraction, platelet aggregation, neurite retraction, and cell motility. Additionally, 1-palmitoyl LPA enhances the action of β-lactam antibiotics (ampicillin, piperacillin, and ceftazidime) on various strains of P. aeruginosa, a pathogen associated with pulmonary disease and pneumonia, via binding both Ca2+ and Mg2+.

Chemical Properties

Cas No. 22002-85-3 SDF
别名 1-Palmitoyl LPA
Canonical SMILES CCCCCCCCCCCCCCCC(OC[C@@H](O)COP(O)(O)=O)=O
分子式 C19H39O7P 分子量 410.5
溶解度 DMF: 2 mg/ml,DMSO: 2.5 mg/ml,Ethanol: 25 mg/ml,PBS (pH 7.2): 3 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.4361 mL 12.1803 mL 24.3605 mL
5 mM 0.4872 mL 2.4361 mL 4.8721 mL
10 mM 0.2436 mL 1.218 mL 2.4361 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Lysophosphatidic acid, alkylglycerophosphate and alkylacetylglycerophosphate increase the neuronal nuclear acetylation of 1-acyl lysophosphatidyl choline by inhibition of lysophospholipase

Mol Cell Biochem 1999 Aug;198(1-2):47-55.PMID:10497877DOI:10.1023/a:1006933625802.

Neuronal nuclei were isolated from rabbit cerebral cortex, and lipid acetylation reactions were studied because of the high nuclear concentration of acetyltransferases that generate platelet activating factor (PAF) and its acyl analogue AcylPAF. The neuronal nuclear acetylation of 1-palmitoyl lysophosphatidylcholine (lyso PC) was found to be increased more than twofold when low concentrations of lyso PC were incubated in acetylation assays in the presence of 1-Palmitoyl Lysophosphatidic Acid (lyso PA) or 1-hexadecyl glycerophosphate (AGP). This effect was not found for a variety of other acidic and neutral 1-acyl lysoglycerophospholipids. At 4 microM concentrations, AGP was the more effective in increasing rates of lyso PC acetylation, while lyso PA was more effective at 25-35 microM. 1-Stearoyl, 1-alkenyl and 1-decanoyl analogues of lyso PA were all less effective than 1-palmitoyl lyso PA. Phosphatidic acid was considerably less effective than lyso PA, while the acetylated analogue of AGP, AAcGP (alkylacetylglycerophosphate), increased rates of lyso PC acetylation to maxima similar to those seen with lyso PA or AGP. In addition, AAcGP promoted these maxima at considerably lower concentrations (2-4 microM). A mechanism for these effects was suggested when nuclear envelopes (NE), isolated in the presence of PMSF, showed these maximal acetylation rates at low lyso PC concentrations, and these rates were not elevated by the presence of lyso PA. PMSF is a protease inhibitor but can also inhibit lysophospholipase activity. We found a nuclear lysophospholipase that degraded lyso PC at rates more than 13 times those of nuclear lyso PC acetylation. PMSF did inhibit this nuclear lysophospholipase, as did lyso PA, AGP and AAcGP. Kinetic analyses of the effects of lyso PA, AGP and AAcGP on lyso PC lysophospholipase indicated that these three lipids acted as competitive inhibitors for the lyso PC substrate. It is possible that low rates of lyso PC acetylation seen in neuronal nuclei at low lyso PC concentrations, are caused by lyso PC loss mediated by a very strong nuclear lysophospholipase. The effects of lyso PA, AGP and AAcGP in boosting rates of lyso PC acetylation likely come from the inhibition of nuclear lysophospholipase and a preservation of lyso PC concentrations. Competing neuronal nuclear reactions for low endogenous levels of lyso PC may regulate the formation of AcylPAF, and rising lyso PA, AGP or AAcGP concentrations can increase rates of nuclear AcylPAF synthesis.

Effects of feeding a Lactobacillus plantarum JL01 diet on caecal bacteria and metabolites of weaned piglets

Lett Appl Microbiol 2021 Jan;72(1):24-35.PMID:32989746DOI:10.1111/lam.13399.

Currently, knowledge is limited concerning the impact of a Lactobacillus plantarum JL01 diet for weaned piglets on caecal bacteria and metabolite profiles. In our experiments, 24 weaned piglets were randomly divided into two groups; each piglet in the treatment groups (Cec-Lac) was fed a basic diet and administered 10 ml of L. plantarum JL01 (1·0 × 109 CFU per ml) every day. The control group (Cec-Con) was fed a basic diet. After feeding for 28 days, we analysed the parameters of the caecal digesta of weaned piglets. We used 16S rDNA gene sequencing and mass spectrometry (MS)-based metabolomics techniques to investigate the effect of a L. plantarum JL01 diet on intestinal microbial composition and its metabolite profiles in the caecum contents of weaned piglets. The results showed that the richness estimators (ACE and Chao indices) in the caecal bacteria increased in the Cec-Lac group. Prevotella_2 and Desulfovibrio decreased significantly, while Pantoea and Rectale_group increased in the caecum of weaned piglets in the Cec-Lac group. Furthermore, Pearson's correlation analysis revealed that the genus Rectale_group was positively correlated with indole-3-acetic acid (P < 0·05), and the genus Pantoea had the same correlation with 1-Palmitoyl Lysophosphatidic Acid. The metabolomics analysis revealed that the L. plantarum JL01 diet supplementation had significant effects on tryptophan metabolism and fat digestion and absorption. The results indicated that the L. plantarum JL01 dietary supplementation not only altered the microbial composition but also mediated tryptophan metabolism and fat digestion and absorption in the caecum, factors that may further affect the health of the host.

Yiqi Jiemin decoction alleviates allergic rhinitis in a guinea pig model by suppressing inflammation, restoring Th1/Th2 balance, and improving cellular metabolism

Aging (Albany NY) 2021 Jul 27;13(14):18423-18441.PMID:34315133DOI:10.18632/aging.203292.

We investigated the mechanisms underlying the therapeutic effects of Yiqi Jiemin decoction (YJD), a traditional Chinese medicine (TCM), in the ovalbumin (OVA)-induced allergic rhinitis (AR) model in guinea pigs. YJD significantly decreased infiltration of mast cells and eosinophils into the nasal mucosa of AR model guinea pigs. YJD also increased expression of TGF-β in the nasal mucosa, restored the balance of Th1/Th2 immune cell responses, and decreased serum levels of various pro-inflammatory mediators, including histamine (HA), neuropeptide Y (NPY), acetylcholine (ACH), norepinephrine and immunoglobulin E (IgE). Metabolic analyses using liquid chromatography coupled with high-resolution mass spectrometry revealed that YJD improved cellular metabolism in AR model guinea pigs and increased serum levels of glycocholic acid while decreasing levels 1-Palmitoyl Lysophosphatidic Acid. RNA-sequencing analysis identified BPIFB2 as a potential diagnostic biomarker and therapeutic target for AR. Functional enrichment analyses showed that YJD significantly inhibited cytokine secretion pathways in AR model guinea pigs. These findings demonstrate that YJD protects against OVA-induced AR in guinea pigs by suppressing inflammation in the nasal mucosa, restoring Th1/Th2 balance, and improving cellular metabolism.