Home>>Signaling Pathways>> Antibody-drug Conjugate/ADC Related>> ADC Cytotoxin>>Taltobulin (HTI-286)

Taltobulin (HTI-286) Sale

(Synonyms: N,BETA,BETA-三甲基-L-苯基丙氨酰基-N-[(1S,2E)-3-羧基-1-(1-甲基乙基)-2-丁烯基]-N,3-二甲基-L-缬氨酰胺,HTI-286; SPA-110) 目录号 : GC32753

An inhibitor of microtubule polymerization

Taltobulin (HTI-286) Chemical Structure

Cas No.:228266-40-8

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥2,258.00
现货
5mg
¥2,053.00
现货
10mg
¥3,213.00
现货
50mg
¥9,818.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

HTI 286 is an inhibitor of microtubule polymerization.1,2 It binds to (Kd = 260 nM) and inhibits the polymerization of tubulin in a cell-free assay when used at concentrations of 0.1 and 1 ?M. HTI 286 (30 nM) induces cell cycle arrest at the G2/M phase and apoptosis in KB-3-1 epidermoid carcinoma cells.2 It inhibits cell growth in a panel of 18 tumor cell lines, including HCT-15 and DLD-1 colon cancer cells, which overexpress P-glycoprotein (mean IC50 = 2.5 nM). HTI 286 (1.6 mg/kg) reduces tumor volume in LOX, KB-3-1, KB-8-5, MX-1, DLD-1, and HCT-15 mouse xenograft models.

1.Krishnamurthy, G., Cheng, W., Lo, M.-C., et al.Biophysical characterization of the interactions of HTI-286 with tubulin heterodimer and microtubulesBiochemistry42(46)13484-13495(2003) 2.Loganzo, F., Discafani, C.M., Annable, T., et al.HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivoCancer Res.63(8)1838-1845(2003)

Chemical Properties

Cas No. 228266-40-8 SDF
别名 N,BETA,BETA-三甲基-L-苯基丙氨酰基-N-[(1S,2E)-3-羧基-1-(1-甲基乙基)-2-丁烯基]-N,3-二甲基-L-缬氨酰胺,HTI-286; SPA-110
Canonical SMILES CC(C)(C)[C@H](NC([C@H](C(C)(C1=CC=CC=C1)C)NC)=O)C(N([C@@H](C(C)C)/C=C(C(O)=O)\C)C)=O
分子式 C27H43N3O4 分子量 473.65
溶解度 DMSO : ≥ 100 mg/mL (211.13 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.1113 mL 10.5563 mL 21.1126 mL
5 mM 0.4223 mL 2.1113 mL 4.2225 mL
10 mM 0.2111 mL 1.0556 mL 2.1113 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Absolute configurations of tubulin inhibitors Taltobulin (HTI-286) and HTI-042 characterized by X-ray diffraction analysis and NMR studies

Bioorg Med Chem Lett 2010 Mar 1;20(5):1535-8.PMID:20137930DOI:10.1016/j.bmcl.2010.01.047.

The stereochemistry of the tubulin inhibitors taltobulin HTI-286 (2) and HTI-042 (3) was determined by utilizing the DPFGSE 1D NOE experiment. Single crystal X-ray diffraction analysis further confirmed the absolute configuration of these two compounds, which carry the (S,S,S)-configuration necessary for biological activity.

Biophysical characterization of the interactions of HTI-286 with tubulin heterodimer and microtubules

Biochemistry 2003 Nov 25;42(46):13484-95.PMID:14621994DOI:10.1021/bi035530x.

HTI-286 is a synthetic analogue of the natural product hemiasterlin and is a potent antimitotic agent. HTI-286 inhibits the proliferation of tumor cells during mitosis. The observed antimitotic activity is due to the binding of HTI-286 to tubulin. This report details the effects of HTI-286 on soluble tubulin and preassembled microtubules. HTI-286 binds tubulin monomer and oligomerizes it to an 18.5 S species corresponding to a discrete ring structure consisting of about 13 tubulin units as determined by sedimentation equilibrium analyses. The rate of formation of the oligomers is dependent on the concentration of HTI-286 and the time of incubation. Tubulin oligomers, specifically the 18.5 S species, form slowly. The interactions of HTI-286 with tubulin were studied by isothermal titration calorimetry. HTI-286 binds tubulin rapidly, and the initial association of HTI-286 with tubulin is enthalpically driven with a DeltaH value of -14 kcal/mol at 25 degrees C and a dissociation constant of ca. 100 nM. However, the accompanying tubulin oligomerization event does not produce measurable heats at 25 degrees C. The dissociation constant estimated from the changes in the intrinsic fluorescence of tubulin was found to be consistent with the calorimetric results. Both HTI-286 and hemiasterlin bind tubulin with nearly equal potency. However, the stability of the tubulin oligomers is not identical under size-exclusion column chromatographic conditions. The tubulin oligomers formed in the presence of HTI-286 dissociate on the column, while the corresponding oligomers formed in the presence of hemiasterlin are stable. Tubulin undergoes a change in the secondary structure in the presence of HTI-286, which is evidenced by changes in the circular dichroic absorption spectrum of tubulin. In contrast to the microtubule-stabilizing effects of paclitaxel, both HTI-286 and hemiasterlin depolymerize preassembled microtubules at micromolar concentrations.

HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo

Cancer Res 2003 Apr 15;63(8):1838-45.PMID:12702571doi

Hemiasterlin is a natural product derived from marine sponges that, like other structurally diverse peptide-like molecules, binds to the Vinca-peptide site in tubulin, disrupts normal microtubule dynamics, and, at stoichiometric amounts, depolymerizes microtubules. Total synthesis of hemiasterlin and its analogues has been accomplished, and optimal pharmacological features of the series have been explored. The biological profile of one analogue, HTI-286, was studied here. HTI-286 inhibited the polymerization of purified tubulin, disrupted microtubule organization in cells, and induced mitotic arrest, as well as apoptosis. HTI-286 was a potent inhibitor of proliferation (mean IC(50) = 2.5 +/- 2.1 nM in 18 human tumor cell lines) and had substantially less interaction with multidrug resistance protein (P-glycoprotein) than currently used antimicrotubule agents, including paclitaxel, docetaxel, vinorelbine, or vinblastine. Resistance to HTI-286 was not detected in cells overexpressing the drug transporters MRP1 or MXR. In athymic mice implanted with human tumor xenografts, HTI-286 administered i.v. in saline inhibited the growth of numerous human tumors derived from carcinoma of the skin, breast, prostate, brain, and colon. Marked tumor regression was observed when used on established tumors that were >1 gram in size. Moreover, HTI-286 inhibited the growth of human tumor xenografts (e.g., HCT-15, DLD-1, MX-1W, and KB-8-5) where paclitaxel and vincristine were ineffective because of inherent or acquired resistance associated with P-glycoprotein. Efficacy was also achieved with p.o. administration of HTI-286. These data suggest that HTI-286 has excellent preclinical properties that may translate into superior clinical activity, as well as provide a useful synthetic reagent to probe the drug contact sites of peptide-like molecules that interact with tubulin.

Cells resistant to HTI-286 do not overexpress P-glycoprotein but have reduced drug accumulation and a point mutation in alpha-tubulin

Mol Cancer Ther 2004 Oct;3(10):1319-27.PMID:15486199doi

HTI-286, a synthetic analogue of hemiasterlin, depolymerizes microtubules and is proposed to bind at the Vinca peptide site in tubulin. It has excellent in vivo antitumor activity in human xenograft models, including tumors that express P-glycoprotein, and is in phase II clinical evaluation. To identify potential mechanisms of resistance induced by HTI-286, KB-3-1 epidermoid carcinoma cells were exposed to increasing drug concentrations. When maintained in 4.0 nmol/L HTI-286, cells had 12-fold resistance to HTI-286. Cross-resistance was observed to other Vinca peptide-binding agents, including hemiasterlin A, dolastatin-10, and vinblastine (7- to 28-fold), and DNA-damaging drugs, including Adriamycin and mitoxantrone (16- to 57-fold), but minimal resistance was seen to taxanes, epothilones, or colchicine (1- to 4-fold). Resistance to HTI-286 was retained when KB-HTI-resistant cells were grown in athymic mice. Accumulation of [(3)H]HTI-286 was lower in cells selected in intermediate (2.5 nmol/L) and high (4.0 nmol/L) concentrations of HTI-286 compared with parental cells, whereas accumulation of [(14)C]paclitaxel was unchanged. Sodium azide treatment partially reversed low HTI-286 accumulation, suggesting involvement of an ATP-dependent drug pump. KB-HTI-resistant cells did not overexpress P-glycoprotein, breast cancer resistance protein (BCRP/ABCG2/MXR), MRP1, or MRP3. No mutations were found in the major beta-tubulin isoform. However, 4.0 nmol/L HTI-286-selected cells had a point mutation in alpha-tubulin that substitutes Ser for Ala(12) near the nonexchangeable GTP-binding site of alpha-tubulin. KB-HTI-resistant cells removed from drug became less resistant to HTI-286, no longer had low HTI-286 accumulation, and retained the Ala(12) mutation. These data suggest that HTI-286 resistance may be partially mediated by mutation of alpha-tubulin and by an ATP-binding cassette drug pump distinct from P-glycoprotein, ABCG2, MRP1, or MRP3.

Targeting prostate cancer with HTI-286, a synthetic analog of the marine sponge product hemiasterlin

Int J Cancer 2008 May 15;122(10):2368-76.PMID:18240145DOI:10.1002/ijc.23406.

Therapeutic resistance is the underlying cause for most cancer deaths and a major problem associated with treatment of metastatic prostate cancer. HTI-286, a fully synthetic analog of the natural tripeptide hemiasterlin, inhibits tubulin polymerization and circumvents transport-based resistance to taxanes. In our study, we evaluated its inhibitory effects on human prostate cancer growth in vitro and in different in vivo models. Androgen-dependent and androgen-independent prostate cancer cell lines including a docetaxel-refractory PC-3 subline (PC-3dR) were treated with HTI-286. Transcriptional profiling was carried out to screen for changes in gene expression induced by HTI-286 and compared to docetaxel. In vivo, nude mice with established PC-3 or PC-3dR xenografts were given HTI-286 intravenously. Additionally, mice bearing hormone-sensitive LNCaP tumors were treated with castration in combination with early or delayed HTI-286 therapy. In all cell lines tested, HTI-286 was a potent inhibitor of proliferation and induced marked increases in apoptosis. Despite similar transcriptomic changes regarding cell death and cell cycle regulating genes after exposure to HTI-286 or docetaxel, array analysis revealed distinct molecular signatures for both compounds. Invivo, HTI-286 significantly inhibited growth of PC-3 and LNCaP xenografts and retained potency in PC-3dR tumors. Simultaneous castration plus HTI-286 therapy was superior to sequential treatment in the LNCaP model. In conclusion, HTI-286 showed strong antitumor activity both in androgen-dependent and androgen- independent tumors and may be a promising agent in second- line treatment strategies for patients suffering from docetaxel- refractory prostate cancer.