Home>>Signaling Pathways>> PI3K/Akt/mTOR Signaling>> PDK-1>>PS47

PS47 Sale

目录号 : GC63155

PS47 is an inactive E isomer of PS48, an activator of 3-Phosphoinositide-dependent protein kinase 1 (PDPK1).

PS47 Chemical Structure

Cas No.:1180676-33-8

规格 价格 库存 购买数量
5 mg
¥720.00
现货
10 mg
¥1,152.00
现货
25 mg
¥2,304.00
现货
50 mg
¥3,681.00
现货
100 mg
¥5,895.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

PS47 is an inactive E isomer of PS48, an activator of 3-Phosphoinositide-dependent protein kinase 1 (PDPK1).

[1] Pastor-Flores D, et al. ACS Chem Biol. 2013 Oct 18;8(10):2283-92.

Chemical Properties

Cas No. 1180676-33-8 SDF
分子式 C17H15ClO2 分子量 286.75
溶解度 DMSO : 100 mg/mL (348.74 mM; Need ultrasonic) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.4874 mL 17.4368 mL 34.8736 mL
5 mM 0.6975 mL 3.4874 mL 6.9747 mL
10 mM 0.3487 mL 1.7437 mL 3.4874 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The structure of PfGH50B, an agarase from the marine bacterium Pseudoalteromonas fuliginea PS47

Acta Crystallogr F Struct Biol Commun 2020 Sep 1;76(Pt 9):422-427.PMID:32880590DOI:10.1107/S2053230X20010328.

The recently identified marine bacterium Pseudoalteromonas fuliginea sp. PS47 possesses a polysaccharide-utilization locus dedicated to agarose degradation. In particular, it contains a gene (locus tag EU509_06755) encoding a β-agarase that belongs to glycoside hydrolase family 50 (GH50), PfGH50B. The 2.0 Å resolution X-ray crystal structure of PfGH50B reveals a rare complex multidomain fold that was found in two of the three previously determined GH50 structures. The structure comprises an N-terminal domain with a carbohydrate-binding module (CBM)-like fold fused to a C-terminal domain by a rigid linker. The CBM-like domain appears to function by extending the catalytic groove of the enzyme. Furthermore, the PfGH50B structure highlights key structural features in the mobile loops that may function to restrict the degree of polymerization of the neoagaro-oligosaccharide products and the enzyme processivity.

Transduction of Methicillin Resistance in Staphylococcus aureus Dependent on an Unusual Specificity of the Recipient Strain

J Bacteriol 1970 Dec;104(3):1158-67.PMID:16559089DOI:10.1128/jb.104.3.1158-1167.1970.

Resistance to methicillin was transduced by phage 80 or 53 from two naturally occurring methicillin-resistant strains of Staphylococcus aureus to methicillin-susceptible recipient strains at frequencies of 10(-7) to 10(-9). Ultraviolet irradiation of transducing phage and posttransductional incubation at 30 C were essential for useful frequencies of transduction. Effectiveness as a recipient for this transduction was highly specific. Strain NCTC 8325 (PS47) in its native state was an ineffective recipient but became effective after it had received by transduction one of several penicillinase plasmids. This acquired effectiveness was retained in most cases after elimination of the plasmid by ethidium bromide treatment. Like the donor strain, the progeny were heterogeneous in the degree of their resistance to methicillin, which was expressed by a higher proportion of cells as the temperature of incubation was lowered from 37 to 30 C. Separate transductants varied widely in the degree of resistance acquired by transduction. Methicillin resistance was stable in the donor and transductant strains. We favored the interpretation that methicillin resistance in our strains was determined by a single chromosomal gene, although the possibility that it was determined by two or more closely linked genes could not be excluded.

The Molecular Basis of Polysaccharide Sulfatase Activity and a Nomenclature for Catalytic Subsites in this Class of Enzyme

Structure 2018 May 1;26(5):747-758.e4.PMID:29681469DOI:10.1016/j.str.2018.03.012.

Sulfatases play a biologically important role by cleaving sulfate groups from molecules. They can be identified on the basis of signature sequences within their primary structures, and the largest family, S1, has predictable features that contribute specifically to the recognition and catalytic removal of sulfate groups. However, despite advances in the prediction and understanding of S1 sulfatases, a major question regards the molecular determinants that drive substrate recognition beyond the targeted sulfate group. Here, through analysis of an endo-4S-ι-carrageenan sulfatase (PsS1_19A) from Pseudoalteromonas sp. PS47, particularly X-ray crystal structures in complex with intact substrates, we show that specific recognition of the substrate leaving group components, in this case carbohydrate, provides the enzyme with specificity for its substrate. On the basis of these results we propose a catalytic subsite nomenclature that we anticipate will form a general foundation for understanding and describing the molecular basis of substrate recognition by sulfatases.

Evidence of non-neutral polymorphism in Plasmodium falciparum gamete surface protein genes Pfs47 and Pfs48/45

Mol Biochem Parasitol 2007 Dec;156(2):117-23.PMID:17826852DOI:10.1016/j.molbiopara.2007.07.008.

Targeted disruption of particular members of the Plasmodium 6-cys protein gene family, including PS47, Ps48/45 and Ps230, is known to dramatically affect parasite fertility. Because loci critical to fertility in many eukaryote species have been shown to be under strong positive selection, we examined sequence variation in four members of the 6-cys protein gene family in Plasmodium falciparum (Pfs36, Pfs38, Pfs47 and Pfs48/45) to determine whether genetic variation in these loci may be of functional significance. Sequence polymorphism among 11 laboratory isolates of P. falciparum was compared with divergence from the respective orthologues in the closely related species P. reichenowi, showing an almost significant skew towards within-species non-synonymous polymorphism in Pfs47 and Pfs48/45 (by the McDonald-Kreitman test) but clearly non-significant results for Pfs36 and Pfs38. A preliminary analysis of Pfs47 sequence polymorphism in field isolates of P. falciparum showed exceptionally high fixation indices (F(ST)) among geographically distinct populations, similar to results seen previously for Pfs48/45. Therefore, both Pfs47 and Pfs48/45 were further analysed by sequencing polymorphic parts of the genes from a Tanzanian population sample of oocysts (a means of analysing diploid genotypes). Both genes displayed higher inbreeding coefficients (F(IS)) compared with the average of 11 unlinked microsatellite loci. These results suggest that allelic variation in these two genes may be functionally significant in influencing mating interactions, a hypothesis that could be tested by fertilization experiments with targeted allelic replacement.

Induction of Systemic Resistance in Chickpea (Cicer arietinum L.) Against Fusarium oxysporum f. sp. ciceris by Antagonistic Rhizobacteria in Assistance with Native Mesorhizobium

Curr Microbiol 2020 Jan;77(1):85-98.PMID:31722045DOI:10.1007/s00284-019-01805-6.

In the present study five potent rhizobacterial antagonists of Fusarium oxysporum f. sp. ciceris alone and in combination with Mesorhizobium (M) were evaluated for their potential to elicit the defence response reactions to reduce the total loss of plants and enhance the growth of two chickpea cultivars i.e. resistant GPF-2 and susceptible JG-41. Observations revealed that maximum phenolic, peroxidase (PO) and polyphenol oxidase (PPO) activity was induced after 30th day of germination. Maximum phenol concentration of 745.8 and 724.1 μg/gfw root tissues was recorded by Ps45 when co-inoculated with Mesorhizobium in both the varieties i.e. GPF-2 and JG-41 respectively. Isolates Ps45, PS47 and Ps44 were found most promising to induce PO and PPO activity, in combination with Mesorhizobium and recorded superior over the fungicide with respect to negative control. Similar results were recorded for the phenylalanine ammonia lyase (PAL), maximally induced on 20th day after germination, where dual inoculation of Ps44+M and Ps45+M induced 57.0 and 54.2 nmol of cinnamic acid min-1 gfw-1 in GPF-2. However in case of JG-41, Ps45 and Ba1a exhibited highest PAL activity of 54.2 and 41.4 nmol of cinnamic acid min-1 gfw-1. Malonic aldehyde concentration in stem tissues at 30th day revealed that lipid peroxidation was effectively reduced in rhizobacterial treated plants compared to fungicide and negative control, signifying the role of antagonistic plant growth promoting rhizobacteria in reducing the stress and enhancing the plant's defence response to reduce the disease incidence and thus improving the plant growth and yield. Moreover the dual inoculations were observed superior over the fungicide treatment as well as single inoculations in terms of growth (root/shoot length and weight), signifying the synergistic effect of screened antagonists and native Mesorhizobium in suppressing the pathogen and thereby enhancing the plant growth.