Home >> Proteins >> Enzymes

Enzymes(酶)

Enzymes are very efficient and specific catalyst proteins which react with 1 or few types of substrates in biochemical reactions and are responsible for bringing about almost all of the chemical reactions in living organisms. Enzymes speed up reactions by providing an alternative reaction pathway of lower activation energy. Without enzymes, reactions take place at a rate far too slow for the pace of metabolism which means that they speed up the chemical reactions in living things.

There are 2 types of enzymes, ones that help join specific molecules together to form new molecules & others that help break specific molecules apart into separate molecules. Enzymes play many important roles ouside the cell as well. One of the best examples of this is the digestive system. For instance, it is enzymes in your digestive system that break food down in your digestive system break food down into small molecules that can be absorbed by the body. Some enzymes in your digestive system break down starch, some proteins and others break down fats. The enzymes used to digest our food are extra-cellular since they are located outside our cells & enzymes inside our cells are intra-cellular enzymes. Enzymes are used in ALL chemical reactions in living things; this includes respiration, photosynthesis, movement growth, getting rid of toxic chemicals in the liver and so on. Enzymes are proteins that must have the correct structure to be active. They are very easily affected by heat, pH and heavy metal ions.

Ribonucleoprotein enzyme catalytic activity is located in the protein part but for some the catalytic activity is in the RNA part. A catalyst is any substance which makes a chemical reaction go faster, without itself being changed. A catalyst can be used over and over again in a chemical reaction and does not get used up.

Enzymes lower the amount of activation energy needed by binding to the reactants of the reaction they catalyze, thus speed up the reaction and can process millions of molecules per second. Enzymes are typically large proteins with high molecular weight that permit reactions to go at conditions that the body can tolerate.

Enzyme nomenclature is based on what the enzyme reacts with & how it reacts along with the ending ase.

Enzymes must get over the activation energy hurdle.

Enzymes change how a reaction will proceed which reduces the activation energy and makes it faster. The more we increase the enzyme concentration the faster the reaction rate for non-catalyzed reactions. Enzymes that are catalyzed reactions also increase reaction rate at higher level of concentration but up to a certain point called Vmax which means that the enzyme has reached its maximum point. The reaction is limited by both the concentrations of the enzyme and substrate. Enzymes as catalysts take part in reactions which provide an alternative reaction pathway. Enzymes do not undergo permanent changes and remain unchanged at the end of the reaction. They only change the rate of reaction, not the position of the equilibrium.Enzymes as catalysts are highly selective by only catalysing specific reactions due to the shapes of the enzyme’s molecule.

Enzymes contain a globular protein part called apoenzyme and a non-protein part named cofactor or prosthetic group or metal-ion-activator. Changes in temperature and pH have great influence on the intra- and intermolecular bonds that hold the protein part in their secondary and tertiary structures.

Examples of cofactors are 1. Prosthetic group that are permanently bound to the enzyme. 2. Activator group which are cations (positively charged metal ions) & temporarily bind to the active site of the enzyme. 3.Coenzymes, usually vitamins or made from vitamins which are not permanently bound to the enzyme molecule, but combine with the enzyme-substrate complex temporarily. Enzymes require the presence cofactors before their catalytic activity can be exerted. This entire active complex is referred to as the holoenzyme.

Without enzymes, our guts would take weeks to digest our food, our muscles, nerves and bones would not work properly and so on…

Main Enzyme category groups:

Oxidoreductases:
All enzymes that catalyse oxido-reductions belong in this class. The substrate oxidized is regarded as a hydrogen or electron donor. The classification is based on 'donor:acceptor oxidoreductase'. The common name is 'dehydrogenase', wherever this is possible; as an alternative, 'acceptor reductase' can be used. 'Oxidase' is used only where O2 is an acceptor. Classification is difficult in some cases, because of the lack of specificity towards the acceptor.

Transferases:
Transferases are enzymes that transfer a group, for example, the methyl group or a glycosyl group, from one compound (generally regarded as donor) to another compound (generally regarded as acceptor). The classification is based on the scheme 'donor:acceptor grouptransferase'. The common names are normally formed as 'acceptor grouptransferase' or 'donor grouptransferase'. In many cases, the donor is a cofactor (coenzyme) that carries the group to be transferred. The aminotransferases constitute a special case.

Hydrolases:
These enzymes catalyse the hydrolysis of various bonds. Some of these enzymes pose problems because they have a very wide specificity, and it is not easy to decide if two preparations described by different authors are the same, or if they should be listed under different entries. While the systematic name always includes 'hydrolase', the common name is, in most cases, formed by the name of the substrate with the suffix -ase. It is understood that the name of the substrate with this suffix, and no other indicator, means a hydrolytic enzyme. It should be noted that peptidases have recommended names rather than common names.

Lyases:
Lyases are enzymes that cleave C-C, C-O, C-N and other bonds by means other than by hydrolysis or oxidation. They differ from other enzymes in that two (or more) substrates are involved in one reaction direction, but there is one compound fewer in the other direction. When acting on the single substrate, a molecule is eliminated and this generates either a new double bond or a new ring. The systematic name is formed according to 'substrate group-lyase'. In common names, expressions like decarboxylase, aldolase, etc. are used. 'Dehydratase' is used for those enzymes that eliminate water. In cases where the reverse reaction is the more important, or the only one to be demonstrated, 'synthase' may be used in the name.

Ligases:
Ligases are enzymes that catalyse the joining of two molecules with concomitant hydrolysis of the diphosphate bond in ATP or a similar triphosphate. 'Ligase' is often used for the common name, but, in a few cases, 'synthase' or 'carboxylase' is used. 'Synthetase' may be used in place of 'synthase' for enzymes in this class.

Products for  Enzymes

  1. Cat.No. 产品名称 Information
  2. GP26123 ANPEP Mouse ANPEP Mouse produced in Sf9 Insect cells is a single, glycosylated polypeptide chain containing 943 amino acids (33-966 a
  3. GP26122 ACPP Mouse ACPP Mouse produced in Sf9 Baculovirus cells is a single, glycosylated polypeptide chain containing 356 amino acids (32-381 aa) and having a molecular mass of 41
  4. GP26121 ACHE Human ACHE Human Recombinant produced in HEK cells is a single, glycosylated, polypeptide chain (32-614 a
  5. GP29001 MMP14 Human, His MMP14 Human Recombinant produced in Sf9 Baculovirus cells is a single, non-glycosylated polypeptide chain containing 527 amino acids (21-538a
  6. GC25940 SNS-314 SNS-314 is a potent and selective inhibitor of Aurora A, Aurora B and Aurora C with IC50 of 9 nM, 31 nM, and 3 nM, respectively. It is less potent to Trk A/B, Flt4, Fms, Axl, c-Raf and DDR2. Phase 1.
  7. GC25930 SHP099 HCl SHP099 is a highly potent, selective and orally bioavailable small-molecule SHP2 inhibitor with an IC50 value of 0.071 μM and shows no activity against SHP1.
  8. GC25530 Iso-H7 dihydrochloride Iso-H7 dihydrochloride is an inhibitor of phosphokinase C.
  9. GC25389 Ethyl potassium malonate Ethyl potassium malonate (Potassium 3-ethoxy-3-oxopropanoate) is used as a competitive inhibitor of the enzyme succinate dehydrogenase. It acts as a precursor to produce (trimethylsilyl)ethyl malonate, which is utilized to prepare beta-ketoesters by acylation and serves as an intermediate for the preparation of ethyl tert-butyl malonate.
  10. GC25039 AG-120 (racemic) AG-120 (racemic), the racemic mixture of AG-120, is an orally available inhibitor of isocitrate dehydrogenase type 1 (IDH1) with potential antineoplastic activity.
  11. GC25005 1-Naphthyl phosphate potassium salt 1-Naphthyl phosphate potassium salt (α-Naphthyl acid phosphate monopotassium salt) is a non-specific phosphatase inhibitor which acts on acid, alkaline, and protein phosphatases.
  12. GC68437 Vimentin-IN-1 Vimentin-IN-1 是 FiVe1 衍生物,是一种口服有效的选择性抗癌剂。FiVe1 能够结合 III 型中间丝蛋白 vimentin (VIM),诱导 Ser56 过度磷酸化,导致有丝分裂的选择性中断和转化表达 VIM 的间充质癌细胞的多核化。Vimentin-IN-1 比 FiVe1 表现出更好的口服利用度和药代动力学特征。
  13. GC68147 dAURK-4 hydrochloride dAURK-4 hydrochloride 是 Alisertib 的一种衍生物,是一种有效的选择性 AURKA (Aurora A) 降解剂。dAURK-4 hydrochloride 具有抗癌作用。
  14. GC68008 GÜ2602 GÜ2602 是一种有效的、可逆的组织蛋白酶 K (cathepsin K (CatK)) 抑制剂,对 成熟 CatK (mCatK) 的 Ki 值为 0.013 nM。GÜ2602 抑制组织蛋白酶 K 酶原的自催化激活。
  15. GC67983 Norathyriol Norathyriol (Mangiferitin) 是芒果苷的天然代谢物。 Norathyriol 以非竞争性方式抑制 α-葡萄糖苷酶 (α-glucosidase ),IC50 为 3.12 μM。Norathyriol 还抑制 PPARα、PPARβ 和 PPARγ,IC50 分别为 92.8 µM、102.4 µM 和 153.5 µM。具有抗氧化、抗癌、抗菌、抗炎、抗菌活性。
  16. GC67947 Triolein 13C3 Triolein 13C3 是一种 13C 标记的 Triolein。Triolein 是一种对称三酰甘油,能够减少 MMP-1 的上调,具有很强的抗氧化、抗炎活性。
  17. GC67938 Guaiacin Guaiacin 是从 Machilus thunbergii SIEB. et ZUCC 的树皮中分离的芳基萘型木质素。Guaiacin 显着增加碱性磷酸酶活性和成骨细胞分化。
  18. GC67908 Calpain-2-IN-1 Calpain-2-IN-1 (Formula 1A) 是一种 calpain-2 亚型特异性的抑制剂,对 calpain-1 和 calpain-2 的 Ki 分别为 181 nM 和 7.8 nM。Calpain-2-IN-1 可用于神经退行性疾病和其他突触功能疾病的研究。
  19. GC67899 Aurora kinase inhibitor-8 Aurora kinase inhibitor-8 是一种高选择性 Aurora 激酶的抑制剂。
  20. GC67798 MLS-0437605 MLS-0437605 是一种选择性双特异性磷酸酶 3 (DUSP3) 抑制剂,IC50 为 3.7 μM。MLS-0437605 对 DUSP3 的选择性比对 DUSP22 和其他蛋白酪氨酸磷酸酶 (PTP) 更具选择性。
  21. GC67775 Casein kinase 1δ-IN-3 Casein kinase 1δ-IN-3 (Compound 23a) 是一种酪蛋白激酶 1δ (CK1d) 抑制剂,pIC50 为 6.5376 M。
  22. GC66360 Girentuximab Girentuximab (G250) 是一种嵌合单克隆抗体,可与碳酸酐酶 IX (CAIX) 结合,碳酸酐酶 IX 是一种在透明细胞肾细胞癌 (ccRCC) 中广泛表达的细胞表面糖蛋白。
  23. GC66033 Casein kinase 1δ-IN-1 Casein kinase 1δ-IN-1 (compound 822) 是酪蛋白激酶 1δ (CK1δ) 的抑制剂,抑制作用大于5%。Casein kinase 1δ-IN-1 可用于神经退行性疾病,如阿尔茨海默病的研究。
  24. GC66029 hCAI/II-IN-6 hCAI/II-IN-6 是一种具有口服活性的 human carbonic anhydrase (CA) 抑制剂。hCAI/II-IN-6 选择性地抑制 hCA II 和 hCA VII,对 hCA I,hCA II,hCA VII 和 hCA XII 的 Ki 值分别为 220,4.9,6.5 和 >50000 nM。hCAI/II-IN-6 在体内显示抗惊厥活性和抗最大电击 (MES) 活性。hCAI/II-IN-6 可以用于癫痫的研究。
  25. GC65998 Cathepsin C-IN-5 Cathepsin C-IN-5 (compound SF38) 是一种有效的、选择性的和具有口服活性的 组织蛋白酶 C 抑制剂,Cat C、Cat L、Cat S、Cat B、Cat K 的 IC50s 分别为 59.9 nM, 4.26 µM、>5 µM、>5 µM、>5 µM。Cathepsin C-IN-5 抑制骨髓和血液中的 Cat C 活性。Cathepsin C-IN-5 降低 NSP(中性粒细胞丝氨酸蛋白酶)的活化。Cathepsin C-IN-5 具有抗炎活性。
  26. GC65957 MMP13-IN-2 MMP13-IN-2 是一种有效、选择性和口服活性的 MMP-13 抑制剂。MMP13-IN-2 对 MMP-13 具有优异的效价 (IC50=0.036 nM),对 MMP-1、3、7、8、9、14 和 TACE 的选择性(大于 1500 倍)。MMP13-IN-2 在体外具有阻止软骨释放胶原蛋白的能力。MMP13-IN-2 具有胶原酶相关疾病研究的潜力。
  27. GC65938 Thrombin inhibitor 5 WAY-358871 is a bioactive compound.
  28. GC65668 5-Amino-8-hydroxyquinoline 5-氨基-8-羟基喹啉(5A8HQ)是一种潜在的抗癌候选药物,具有良好的蛋白酶体抑制活性
  29. GC65612 Acetazolamide sodium An Analytical Reference Standard
  30. GC52175 IQA A CK2 inhibitor
  31. GC65549 Indisulam A sulfonamide with anticancer activity
  32. GC65547 (1S,2R)-Alicapistat (1S,2R)-Alicapistat ((1S,2R)-ABT-957) 是一种具有口服活性的人钙激活中性蛋白酶 (calpains 1 和 2) 的选择性抑制剂,可能用于阿尔茨海默病 (AD) 的研究。 Alicapistat 可减轻羰基还原的代谢倾向,对 calpain 1 的 IC50 为 395 nM。
  33. GC65542 NSC-87877 disodium A potent inhibitor of SHP-1 and SHP-2
  34. GC65533 SHP394 SHP394 是一种有效的,具有口服活性的,变构的选择性SHP2 抑制剂,IC50 为 23 nM。
  35. GC65432 LV-320 LV-320 是一种有效且非竞争性的 ATG4B 抑制剂,其 IC50 值为 24.5 μM,Kd 值为 16 μM。 LV-320 抑制 ATG4B 的酶促活性,阻断细胞自噬,并且在体内稳定,无毒且有活性。
  36. GC65394 7-BIA 7-BIA 是一种受体型蛋白酪氨酸磷酸酶 D (PTPRD) 抑制剂,IC50 值约为 1-3 μM。
  37. GC65308 SHIP2-IN-1 SHIP2-IN-1 是一种有效的 SHIP2 抑制剂,IC50 值为 2 µM。SHIP2-IN-1 可使 GSK3β 的 Ser9 位点磷酸化,抑制 GSK3β 的活化。SHIP2-IN-1 可用于阿尔滋海默症的研究。
  38. GC65307 S130 S130 是一种高亲和力、选择性的半胱氨酸蛋白酶 ATG4B 的抑制剂, IC50 值为 3.24 µM。S130 可以抑制自噬通量。
  39. GC65271 p-Hydroxyphenethyl trans-ferulate p-Hydroxyphenethyl trans-ferulate 具有抗高血糖 (酵母α-葡萄糖苷酶,IC50 19.24 ± 1.73 µmol L-1),抗氧化,抗炎活性。p-Hydroxyphenethyl trans-ferulate 具有抗癌活性和血清素能活性。
  40. GC65260 EDP-305 EDP-305 是一种口服有效且选择性的 farnesoid X 受体 (FXR) 激动剂,其 EC50 值为 34 nM (CHO 细胞嵌合性 FXR) 和 8 nM (HEK 细胞全长 FXR)。EDP-305 显示出强大而持久的抗纤维化作用。EDP-305 可用于原发性胆道胆管炎 (PBC) 和非酒精性脂肪性肝炎 (NASH) 研究。
  41. GC65157 Naphthol AS-BR Naphthol AS-BR 是组织化学中,酸性和碱性磷酸酶的底物。
  42. GC65153 KGP94 KGP94 是一种特异的 cathepsin L 抑制剂,IC50为 189 nM。KGP94 抑制转移癌的运动性和侵袭性,对人类细胞的毒性低 (GI50=26.9µM)。
  43. GC65098 ARL67156 triethylamine ARL67156 (FPL 67156) triethylamine 是一种 ecto-ATPase 抑制剂。ARL67156 triethylamine 是竞争性 NTPDase1 (CD39),NTPDase3 和 NPP1 抑制剂,Ki 分别为 11,18 和 12 μM。ARL67156 triethylamine 可用于钙化性主动脉瓣疾病、哮喘等疾病的研究。
  44. GC65097 ARL67156 trisodium hydrate ARL67156 (FPL 67156) trisodium hydrate 是一种 ecto-ATPase 抑制剂。ARL67156 trisodium hydrate 是竞争性 NTPDase1 (CD39),NTPDase3 和 NPP1 抑制剂,Ki 分别为 11,18 和 12 μM。ARL67156 trisodium hydrate 可用于钙化性主动脉瓣疾病、哮喘等疾病的研究。
  45. GC65025 BCI hydrochloride An inhibitor of DUSP6 and DUSP1
  46. GC65010 Bortezomib-d8 Bortezomib-d8 (PS-341-d8) 是 Bortezomib 的氘代物。Bortezomib (PS-341) 是一种可逆性和选择性的蛋白酶体 (proteasome) 抑制剂,通过靶向苏氨酸残基有效抑制 20S 蛋白酶体 (Ki=0.6 nM)。Bortezomib 破坏细胞周期、诱导细胞凋亡以及抑制核因子 NF-κB。Bortezomib 是第一种蛋白酶体抑制剂,具有抗癌活性。
  47. GC64992 YH-306 YH-306 是一种抗肿瘤剂。YH-306 通过 FAK 通路抑制结直肠肿瘤的生长和转移。 YH-306 显着抑制结直肠癌细胞的迁移和侵袭。YH-306 有效抑制不受抑制的增殖并诱导细胞凋亡 (apoptosis)。YH-306 抑制 FAK、c-Src、桩蛋白和 PI3K、Rac1 的激活以及 MMP2 和 MMP9 的表达。YH-306 还抑制肌动蛋白相关蛋白 (Arp2/3) 复合物介导的肌动蛋白聚合。
  48. GC64936 TD52 dihydrochloride A derivative of erlotinib
  49. GC64734 Benzenesulphonamide Benzenesulfonamide (Benzenesulphonamide, Benzosulfonamide, Phenyl sulfonamide, Benzene sulfonamide) ia an inhibitor of carbonic anhydrases.
  50. GC64638 ALV1 ALV1 是一种有效的 Ikaros 和 Helios 降解剂。ALV1 能显著降低 IKZF1-4、CK1α (酪蛋白激酶 1α,CSNK1A1) 和核糖体蛋白 RPL4 的蛋白丰度。ALV1 对和 IKZF1/2/3 表现出相似的降解活性。ALV1 诱导 Helios/CRBN 二聚反应。ALV1 在很大程度上促进了 IL-2 的分泌。
  51. GC64607 Dazcapistat Dazcapistat 是一种有效的钙蛋白酶 (calpain) 抑制剂,对 calpain 1, calpain 2 和calpain 9 的 IC50 值为 <3 μM (详细信息请参见专利WO2018064119A1, compound 405)。

Items 101 to 150 of 1645 total

per page
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

Set Descending Direction