Home>>Signaling Pathways>> Proteases>> Acetyl-CoA Carboxylase>>PF-05221304

PF-05221304

(Synonyms: NSC 170984, R 6238, STAT5 Inhibitor III) 目录号 : GC25726

PF-05221304 is an orally bioavailable, liver-targeted inhibitor of acetyl-CoA carboxylase (ACC), an enzyme that catalyzes the first committed step in de novo lipogenesis (DNL).

PF-05221304 Chemical Structure

Cas No.:1370448-25-1

规格 价格 库存 购买数量
5mg
¥2,236.00
现货
25mg
¥6,708.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

PF-05221304 is an orally bioavailable, liver-targeted inhibitor of acetyl-CoA carboxylase (ACC), an enzyme that catalyzes the first committed step in de novo lipogenesis (DNL).

PF-05221304 inhibits DNL, stimulates fatty acid oxidation, and reduces triglyceride accumulation in primary human hepatocytes.[2]

PF-05221304 reduces DNL and steatosis in Western diet-fed rats in vivo, showing the potential to reduce hepatic lipid accumulation and potentially lipotoxicity.[2]

[1] Arthur Bergman, et al. Clin Pharmacol Drug Dev. 2020 May;9(4):514-526. [2] Ross TT, et al. Cell Mol Gastroenterol Hepatol. 2020;10(4):829-851.

Chemical Properties

Cas No. 1370448-25-1 SDF Download SDF
别名 NSC 170984, R 6238, STAT5 Inhibitor III
分子式 C28H30N4O5 分子量 502.56
溶解度 DMSO: 100 mg/mL (198.98 mM);Water: Insoluble;Ethanol: 5 mg/mL (9.95 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.9898 mL 9.9491 mL 19.8981 mL
5 mM 0.398 mL 1.9898 mL 3.9796 mL
10 mM 0.199 mL 0.9949 mL 1.9898 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trials

Nat Med 2021 Oct;27(10):1836-1848.PMID:34635855DOI:10.1038/s41591-021-01489-1.

Alterations in lipid metabolism might contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, no pharmacological agents are currently approved in the United States or the European Union for the treatment of NAFLD. Two parallel phase 2a studies investigated the effects of liver-directed ACC1/2 inhibition in adults with NAFLD. The first study ( NCT03248882 ) examined the effects of monotherapy with a novel ACC1/2 inhibitor, PF-05221304 (2, 10, 25 and 50 mg once daily (QD)), versus placebo at 16 weeks of treatment; the second study ( NCT03776175 ) investigated the effects of PF-05221304 (15 mg twice daily (BID)) co-administered with a DGAT2 inhibitor, PF-06865571 (300 mg BID), versus placebo after 6 weeks of treatment. The primary endpoint in both studies was percent change from baseline in liver fat assessed by magnetic resonance imaging-proton density fat fraction. Dose-dependent reductions in liver fat reached 50-65% with PF-05221304 monotherapy doses ≥10 mg QD; least squares mean (LSM) 80% confidence interval (CI) was -7.2 (-13.9, 0.0), -17.1 (-22.7, -11.1), -49.9 (-53.3, -46.2), -55.9 (-59.0, -52.4) and -64.8 (-67.5, -62.0) with 16 weeks placebo and PF-05221304 2, 10, 25 and 50 mg QD, respectively. The overall incidence of adverse events (AEs) did not increase with increasing PF-05221304 dose, except for a dose-dependent elevation in serum triglycerides (a known consequence of hepatic acetyl-coenzyme A carboxylase (ACC) inhibition) in 23/305 (8%) patients, leading to withdrawal in 13/305 (4%), and a dose-dependent elevation in other serum lipids. Co-administration of PF-05221304 and PF-06865571 lowered liver fat compared to placebo (placebo-adjusted LSM (90% CI) -44.6% (-54.8, -32.2)). Placebo-adjusted LSM (90% CI) reduction in liver fat was -44.5% (-55.0, -31.7) and -35.4% (-47.4, -20.7) after 6 weeks with PF-05221304 or PF-06865571 alone. AEs were reported for 10/28 (36%) patients after co-administered PF-05221304 and PF-06865571, with no discontinuations due to AEs, and the ACC inhibitor-mediated effect on serum triglycerides was mitigated, suggesting that PF-05221304 and PF-06865571 co-administration has the potential to address some of the limitations of ACC inhibition alone.

Efficacy and safety of an orally administered DGAT2 inhibitor alone or coadministered with a liver-targeted ACC inhibitor in adults with non-alcoholic steatohepatitis (NASH): rationale and design of the phase II, dose-ranging, dose-finding, randomised, placebo-controlled MIRNA (Metabolic Interventions to Resolve NASH with fibrosis) study

BMJ Open 2022 Mar 30;12(3):e056159.PMID:35354614DOI:10.1136/bmjopen-2021-056159.

Introduction: Small molecule inhibitors of the terminal step in intrahepatic triglyceride synthesis (diacylglycerol acyltransferase 2 inhibitor (DGAT2i, PF-06865571, ervogastat)) and upstream blockade of de novo lipogenesis via acetyl-coenzyme A carboxylase inhibitor (ACCi, PF-05221304, clesacostat) showed promise in reducing hepatic steatosis in early clinical trials. This study assesses efficacy and safety of these metabolic interventions to resolve non-alcoholic steatohepatitis (NASH) with fibrosis. Methods and analysis: This phase II, randomised, dose-ranging, dose-finding study evaluates DGAT2i 25-300 mg two times per day (BID) or 150-300 mg once a day, DGAT2i 150-300 mg BID+ACCi 5-10 mg BID coadministration or matching placebo in a planned 450 adults with biopsy-confirmed NASH and liver fibrosis stages 2-3 from approximately 220 sites in 11 countries across North America, Europe and Asia. A triage approach including double-confirmation via non-invasive markers is included prior to screening/baseline liver biopsy. On confirmation of histological diagnosis, participants enter a ≥6-week run-in period, then a 48-week double-blind, double-dummy dosing period. The primary endpoint is the proportion of participants achieving histological NASH resolution without worsening fibrosis, ≥1 stage improvement in fibrosis without worsening NASH, or both, assessed by central pathologists. Other endpoints include assessment of hepatic steatosis (imaging substudy), overall safety and tolerability, and evaluation of blood-based biomarkers and quantitative ultrasound parameters over time. Ethics and dissemination: Metabolic Interventions to Resolve NASH with fibrosis (MIRNA) is conducted in accordance with the Declaration of Helsinki and Council for International Organisations of Medical Sciences (CIOMS) International Ethical Guidelines, International Council on Harmonisation Good Clinical Practice guidelines, applicable laws and regulations, including privacy laws. Local independent review board/ethics committees (IRB/ECs) review/approve the protocol, any amendments, informed consent and other forms. Participants provide written informed consent. Details of all IRB/ECs, as well as results, will be published in a peer-reviewed journal and publicly disclosed through ClinicalTrials.gov, EudraCT, and/or www.pfizer.com and other public registries as per applicable local laws/regulations. Trial registration number: NCT04321031.

Pharmacokinetics, mass balance, metabolism, and excretion of the liver-targeted acetyl-CoA carboxylase inhibitor PF-05221304 (clesacostat) in humans

Xenobiotica 2022 Mar;52(3):240-253.PMID:35382680DOI:10.1080/00498254.2022.2062487.

The disposition of the hepatoselective ACC inhibitor PF-05221304 (Clesacostat) was studied after a single 50-mg oral dose of [14C]-PF-05221304 to healthy human subjects.Mass balance was achieved with 89.9% of the administered dose recovered in urine and faeces, over the 11-day study period. The total administered radioactivity excreted in faeces and urine was 81.7 and 8.2%, respectively. Unchanged PF-05221304 accounted for 35.6% of the radioactive dose in faeces, suggesting ∼64% of the administered dose was absorbed.PF-05221304 was principally metabolised via oxidative and reductive pathways involving: (a) N-dealkylation, (b) isopropyl group monohydroxylation to yield enantiomeric metabolites (M2a and M2b), (c) hydroxylation on the 3-azaspiro[5.5]undecan-8-one moiety to metabolites M5 and 519c, and (d) carbonyl group reduction to enantiomeric alcohol metabolites M3, and M4. Secondary metabolites (521a, 521b, and 533), derived from a combination of oxidation and reduction of the primary metabolites accounted for ∼14.8% of the dose. In plasma, unchanged PF-05221304 represented 96.1% circulating radioactivity. Metabolites M1, M2b, and M2a represented 1.94, 1.76, and 0.18% of circulating radioactivity, respectively.Overall, these data suggest that PF-05221304 is well absorbed in humans and eliminated largely via phase I metabolism.

Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of a Liver-Targeting Acetyl-CoA Carboxylase Inhibitor (PF-05221304): A Three-Part Randomized Phase 1 Study

Clin Pharmacol Drug Dev 2020 May;9(4):514-526.PMID:32065514DOI:10.1002/cpdd.782.

PF-05221304 is a liver-targeted inhibitor of acetyl-CoA carboxylase, an enzyme that catalyzes the first committed step in de novo lipogenesis (DNL). This first-in-human study investigated safety/tolerability and pharmacokinetics of single and multiple ascending oral PF-05221304 doses, and fructose-stimulated DNL inhibition with repeated oral doses. Healthy subjects (n = 96) received single (1-240 mg) or repeated (2-200 mg daily) doses for 14 days or single 100-mg doses with and without food. PF-05221304 was well tolerated at all doses. Repeated PF-05221304 doses inhibited hepatic DNL in a dose-dependent manner, with near-complete inhibition seen at higher doses. With doses yielding ≥90% DNL inhibition, asymptomatic increases in fasting/postprandial serum triglyceride levels (≥40 mg/day) and declines in platelet count (≥60 mg/day) occurred; these were not observed at ≤80% DNL inhibition. Steady-state pharmacokinetics generally increased dose-proportionally, with a half-life of 14-18 hours and a minimal food effect on plasma exposure. The observed safety and tolerability, pharmacokinetics, and pharmacodynamics support the continued evaluation of PF-05221304 for the treatment of nonalcoholic steatohepatitis.

Acetyl-CoA Carboxylase Inhibition Improves Multiple Dimensions of NASH Pathogenesis in Model Systems

Cell Mol Gastroenterol Hepatol 2020;10(4):829-851.PMID:32526482DOI:10.1016/j.jcmgh.2020.06.001.

Background & aims: Disordered metabolism, steatosis, hepatic inflammation, and fibrosis contribute to the pathogenesis of nonalcoholic steatohepatitis (NASH). Acetyl-CoA carboxylase (ACC) catalyzes the first committed step in de novo lipogenesis (DNL) and modulates mitochondrial fatty acid oxidation. Increased hepatic DNL flux and reduced fatty acid oxidation are hypothesized to contribute to steatosis. Some proinflammatory cells also show increased dependency on DNL, suggesting that ACC may regulate aspects of the inflammatory response in NASH. PF-05221304 is an orally bioavailable, liver-directed ACC1/2 inhibitor. The present studies sought to evaluate the effects of PF-05221304 on NASH pathogenic factors in experimental model systems. Methods: The effects of PF-05221304 on lipid metabolism, steatosis, inflammation, and fibrogenesis were investigated in both primary human-derived in vitro systems and in vivo rodent models. Results: PF-05221304 inhibited DNL, stimulated fatty acid oxidation, and reduced triglyceride accumulation in primary human hepatocytes, and reduced DNL and steatosis in Western diet-fed rats in vivo, showing the potential to reduce hepatic lipid accumulation and potentially lipotoxicity. PF-05221304 blocked polarization of human T cells to proinflammatory but not anti-inflammatory T cells, and suppressed activation of primary human stellate cells to myofibroblasts in vitro, showing direct effects on inflammation and fibrogenesis. Consistent with these observations, PF-05221304 also reduced markers of inflammation and fibrosis in the diethylnitrosamine chemical-induced liver injury model and the choline-deficient, high-fat-fed rat model. Conclusions: The liver-directed dual ACC1/ACC2 inhibitor directly improved multiple nonalcoholic fatty liver disease/NASH pathogenic factors including steatosis, inflammation, and fibrosis in both human-derived in vitro systems and rat models.