Home>>Signaling Pathways>> Others>>PEG2000-DSPE

PEG2000-DSPE Sale

(Synonyms: PEG(2000)-1,2-DSPE, PEG2000-DSPE, Polyethylene Glycol-2000-1,2-Distearoyl-sn-glycero-3-PE, Polyethylene Glycol-2000-1,2-Distearoyl-sn-glycero-3-Phosphoethanolamine, Polyethylene Glycol-2000-1,2-Distearoyl-sn-glycero-3-Phosphatidylethanolamine) 目录号 : GC64192

A PEGylated form of DSPE

PEG2000-DSPE Chemical Structure

规格 价格 库存 购买数量
5 mg
¥450.00
现货
10 mg
¥720.00
现货
25 mg
¥1,440.00
现货
50 mg
¥2,340.00
现货
100 mg
¥3,690.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

PEG(2000)-DSPE is a PEGylated form of 1,2-distearoyl-sn-glycero-3-PE .1 It has been used in the generation of micelles and in combination with other lipids in the formation of liposomes. Liposomes containing PEG(2000)-DSPE and encapsulating the DNA topoisomerase inhibitor doxorubicin and the flavonoid quercetin reduce tumor growth in an MCF-7/adr multidrug-resistant breast cancer mouse xenograft model.

1.Zhang, J., Luo, Y., Zhao, X., et al.Co-delivery of doxorubicin and the traditional Chinese medicine quercetin using biotin–PEG2000–DSPE modified liposomes for the treatment of multidrug resistant breast cancerRSC Adv.6(114)113173–113184(2016)

Chemical Properties

Cas No. SDF Download SDF
别名 PEG(2000)-1,2-DSPE, PEG2000-DSPE, Polyethylene Glycol-2000-1,2-Distearoyl-sn-glycero-3-PE, Polyethylene Glycol-2000-1,2-Distearoyl-sn-glycero-3-Phosphoethanolamine, Polyethylene Glycol-2000-1,2-Distearoyl-sn-glycero-3-Phosphatidylethanolamine
分子式 C45H87NNaO11P 分子量 2808.74
溶解度 DMSO : 12.5 mg/mL (4.45 mM; ultrasonic and warming and heat to 60°C) 储存条件 4°C, away from moisture and light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 0.356 mL 1.7802 mL 3.5603 mL
5 mM 0.0712 mL 0.356 mL 0.7121 mL
10 mM 0.0356 mL 0.178 mL 0.356 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Pluronic P123 modified nano micelles loaded with doxorubicin enhanced tumor-suppressing effect on drug-resistant breast cancer cells

Aging (Albany NY) 2020 May 12;12(9):8289-8300.PMID:32396524DOI:10.18632/aging.103138.

Objective: Nano micelles (NMs) have been widely used for various biomedical applications due to its unique physiochemical properties. This study aimed to investigated the anti-tumor effect of doxorubicin (Dox)-loaded Pluronic P123 (P123) and PEG2000-DSPE mixed NMs in drug-resistant breast cancer cells. Results: The expression of P-gp and MDR1 gene was highly expressed in MCF-7R but not MCF-7 cells. The cellular uptake of P123-PEG2000-DSPE (Dox) was higher than that of free Dox and PEG2000-DSPE (Dox) in MCF-7R cells. Furthermore, compared with free Dox, both PEG2000-DSPE (Dox) and P123-PEG2000-DSPE (Dox) significantly diminished cell viability, and promoted cell apoptosis in MCF-7R cells. In addition, the P123-modified NMs obviously inhibited the expression of P-gp and MDR1. Conclusions: P123-PEG2000-DSPE (Dox) had a superior anti-tumor activity than PEG2000-DSPE (Dox) in MCF-7R cells through P-gp-mediated drug excretion and drug resistance mechanisms. Methods: The PEG2000-DSPE NMs (PEG2000-DSPE), P123 and PEG2000-DSPE mixed NMs (P123-PEG2000-DSPE), Dox-loaded PEG2000-DSPE NMs (PEG2000-DSPE (Dox)), and Dox-loaded Pluronic P123 and PEG2000-DSPE mixed NMs (P123-PEG2000-DSPE (Dox)) were prepared, and then the morphologies and the size distribution of PEG2000-DSPE (Dox) and P123-PEG2000-DSPE (Dox) were observed by transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively.

Liposomal quercetin: evaluating drug delivery in vitro and biodistribution in vivo

Expert Opin Drug Deliv 2012 Jun;9(6):599-613.PMID:22607534DOI:10.1517/17425247.2012.679926.

Objective: The drug-loaded PEGylated nanomaterials have shown effective cell-killing in vitro, but to the best of authors' knowledge there have been no reports of successful drug delivery in vitro and in vivo using polyethyleneglycol-2000-distearoyl phosphatidyl ethanolamine (PEG2000-DSPE) nanomaterials loaded with unmodified drug molecules, such as quercetin (QUE). In this study, it remained an open question as to whether such formulations could prove effective in vitro and in vivo, and to study the distribution and clearance of PEG-DPSE-ylated lipid-based quercetin nanoliposomes (PEG2000-DPSE-QUE-NLs) as delivery vehicles for the anticancer drug in vitro and in vivo. Research design and methods: PEG-DPSE layers were attached to QUE-NLs, dispersed in aqueous media and characterized using TEM and HPLC/UV spectroscopy. Tumor cell killing efficacy was assessed in vitro using MTT and trypan blue exclusion assays, and the distribution and clearance pathways, as well as repeated administration in rats, were studied by HPLC spectroscopy. Results: PEG2000-DPSE-QUE-NLs were efficiently dispersed in aqueous media compared with controls, and PEGylated (PEG2000-DPSE) NLs were found to be effective drug delivery vehicles when simply loaded with QUE. The plasma QUE concentration decreased significantly (p < 0.05) after repeated administration of PEG2000-DSPE liposomal QUE. There was a slight ABC phenomenon with the PEG2000-DSPE-modified QUE liposomes. Conclusion: The QUE/PEG2000-DPSE formulation was more effective than QUE in vitro on inhibiting the growth of glioma cancer cells. This work demonstrates that nanomaterials (PEG2000-DPSE) are effective drug delivery vehicles in vivo as tumor-targeted drug carriers.

Highly hydrated deformable polyethylene glycol-tethered lipid bilayers

Langmuir 2014 Aug 12;30(31):9442-7.PMID:25046694DOI:10.1021/la4045804.

The realization of a solid-supported lipid bilayer acting as a workbench for the study of membrane processes is a difficult task. For robustness, the bilayer has to be tethered to the substrate. At the same time, diffusion of the lipids and plastic deformations of the membrane should not be obstructed. Furthermore, a highly hydrated surrounding is mandatory. Here, we show that grafting of a polyethylene glycol-lipid construct (PEG2000-DSPE) to a silicon oxide surface via multiple-step silane chemistry and subsequent deposition of lipids by spin-coating result in a cushioned membrane that has the desired properties. Neutron and X-ray reflectometry measurements are combined to access thickness, density, and hydration of the bilayer and the PEG cushion. We observe a spacer of 55 Å thickness between lipid bilayer and silicon-oxide surface with a rather high hydration of up to 90 ± 3% water. While 11.5 ± 3% of the lipids are grafted to the surface, as determined from the neutron data, the diffusion constant of the lipids, as probed by diffusion of 0.5% Texas Red labeled lipids, remains rather large (D = 2.1 ± 0.1 μm(2)/s), which is a reduction of only 12% compared to a supported lipid bilayer reference without immobilized lipids. Finally, AFM indentation confirms the plastic behavior of the membrane against deformation. We show that rupture of the bilayer does not occur before the deformation exceeds 40 Å. Altogether, the presented PEG-tethered lipid bilayer mimics the deformability of natural cell membranes much better than standard solid-supported lipid bilayers.

Effect of surface charge on the size-dependent cellular internalization of liposomes

Chem Phys Lipids 2019 Nov;224:104726.PMID:30660745DOI:10.1016/j.chemphyslip.2019.01.004.

Here we report that the size dependence of cellular internalization of liposomes differs depending on the surface charge. We prepared liposomes of various lipid compositions ranging from 100 to 200 nm size. It was found that cationic liposomes composed of 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-Dioleoyl-3-trimethylammonium-propane (DOTAP) were most effectively internalized into cells when their mean particle sizes were around 180 nm. When their size was reduced to around 90 nm, the level of internalization reduced six-fold. Conversely, hydrogenated soy phosphatidylcholine (HSPC)/N-(carbonyl-methoxypolyethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (PEG2000-DSPE)/cholesterol(Chol) liposomes, HSPC/PEG2000-DSPE liposomes, and HSPC/Chol liposomes were most readily internalized when they were around 110 to 130 nm in mean particle size. Unlike DOPC/DOTAP liposomes the difference between the maximum and minimum levels of internalization was less than two-fold. It has been suggested that strong electrostatic interactions between cationic liposomes and the negatively charged plasma membrane affect the size dependence and optimal size range for internalization of liposomes. Size dependence of internalization should be carefully monitored for effective formulation development and quality control of liposome drug products.

The effects of temperature, salinity, concentration and PEGylated lipid on the spontaneous nanostructures of bicellar mixtures

Biochim Biophys Acta 2014 Jul;1838(7):1871-80.PMID:24560838DOI:10.1016/j.bbamem.2014.02.004.

The self-assembling morphologies of low-concentration (mostly 1 and 10mg/mL) bicellar mixtures composed of zwitterionic dipalmitoyl (di-C16) phosphatidylcholine (DPPC), dihexanoyl (di-C6) phosphatidylcholine (DHPC), and negatively charged dipalmitoyl (di-C16) phosphatidylglycerol (DPPG) were investigated using small angle neutron scattering, dynamic light scattering and transmission electron microscopy. A polyethylene glycol conjugated (PEGylated) lipid, distearoyl phosphoethanolamine-[methoxy (polyethyleneglycol)-2000] (PEG2000-DSPE), was incorporated in the system at 5mol% of the total lipid composition. The effects of several parameters on the spontaneous structures were studied, including temperature, lipid concentration, salinity, and PEG2000-DSPE. In general, nanodiscs (bicelles) were observed at low temperatures (below the melting temperature, TM of DPPC) depending on the salinity of the solutions. Nanodisc-to-vesicle transition was found upon the elevation of temperature (above TM) in the cases of low lipid concentration in the absence of PEG2000-DSPE or high salinity. Both addition of PEG2000-DSPE and high lipid concentration stabilize the nanodiscs, preventing the formation of multilamellar vesicles, while high salinity promotes vesiculation and the formation of aggregation. This study suggests that the stability of such nanodiscs is presumably controlled by the electrostatic interactions, the steric effect induced by PEG2000-DSPE, and the amount of DHPC located at the disc rim.