MitoPQ
(Synonyms: MitoParaquat) 目录号 : GC44204MitoPQ(MitoParaquat)是一种可选择性增加体内和细胞线粒体基质内超氧化物产生的线粒体靶向氧化还原循环剂。
Cas No.:1821370-28-8
Sample solution is provided at 25 µL, 10mM.
MitoPQ (MitoParaquat) is a mitochondria-targeted redox cycler that selectively increases superoxide production within the mitochondrial matrix in vivo and in cells[1]. MitoPQ accumulates in the mitochondrial matrix and generates O2- through redox cycling at the flavin site of complex I (Fig. 1)[1,2]. MitoPQ is commonly used to study the role of mitochondrial superoxide production in health and disease in both cells and in vivo[3,4].

Fig. 1. Rationale for the development of MitoParaquat[1,2]. MitoParaquat (MitoPQ) is composed of a redox cycling paraquat moiety, and a hydrophobic carbon chain linking it to a mitochondria-targeting triphenylphosphonium cation. MitoPQ is accumulated by mitochondria driven by the plasma (Δψp) and mitochondrial (Δψm) membrane potentials. Within the matrix, the dicationic viologen component of MitoPQ is reduced to a radical monocation by one-electron reduction at the flavin site of complex I. The radical monocation then reacts very rapidly with O2 to generate superoxide. This localized redox cycling leads to the selective production of superoxide within the mitochondrial matrix.
In vitro, treatment of C2C12 myoblasts with MitoPQ (5μM) for 20min time-dependently and significantly increased MitoSOX fluorescence intensity, whereas paraquat (PQ) at equivalent conditions failed to increase MitoSOX oxidation within this timeframe. Treatment of HCT116 cells with MitoPQ (1-10μM) for 24h induced cell death in a dose-dependent manner, with significantly higher toxicity compared to PQ[1]. Treatment of Raw264.7 cells with MitoPQ (0.5μM) for 16h significantly disrupted the mitochondrial membrane potential, an effect that was attenuated by the addition of 10mM N-acetylcysteine (NAC)[5]. Treatment of 3T3-L1 adipocytes with MitoPQ (10μM) for 2h specifically increased mitochondrial superoxide and hydrogen peroxide levels without affecting global cellular respiration[6].
In vivo, acute intraperitoneal injection of MitoPQ (0.16mg/kg) into wild-type mice fasted for 16h significantly impaired glucose tolerance 2h post-injection. Intraperitoneal injection of MitoPQ (0.16mg/kg) in wild-type mice for 1.5h impaired hepatic insulin signaling in vivo, as evidenced by reduced levels of phosphorylated insulin receptor (IR), AKT, and GSK3α[7]. Daily intraperitoneal injection of MitoPQ (0.1mg/kg/day) for 7 days in cardiomyocyte-specific Nrf3 knockout mice significantly reduced survival rates and attenuated the beneficial effects of Nrf3 gene deletion on cardiac function and remodeling after myocardial infarction[8].
References:
[1] ROBB E L, GAWEL J M, AKSENTIJEVIĆ D, et al. Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat[J]. Free Radical Biology and Medicine, 2015, 89: 883-894.
[2] COCHENÉ H M, MURPHY M P. Complex I is the major site of mitochondrial superoxide production by paraquat[J]. Journal of Biological Chemistry, 2008, 283(4): 1786-1798.
[3] ANTONUCCI S, MULVEY J F, BURGER N, et al. Selective mitochondrial superoxide generation in vivo is cardioprotective through hormesis[J]. Free Radical Biology and Medicine, 2019, 134: 678-687.
[4] GOLEVA T N, LYAMZAEV K G, ROGOV A G, et al. Mitochondria-targeted 1, 4-naphthoquinone (SkQN) is a powerful prooxidant and cytotoxic agent[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2020, 1861(8): 148210.
[5] CHOWDHURY A R, ZIELONKA J, KALYANARAMAN B, et al. Mitochondria-targeted paraquat and metformin mediate ROS production to induce multiple pathways of retrograde signaling: A dose-dependent phenomenon[J]. Redox Biology, 2020, 36: 101606.
[6] FAZAKERLEY D J, MINARD A Y, KRYCER J R, et al. Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation[J]. Journal of Biological Chemistry, 2018, 293(19): 7315-7328.
[7] GONCALVES R L, WANG Z B, RIVEROS J K, et al. CoQ imbalance drives reverse electron transport to disrupt liver metabolism[J]. Nature, 2025.
[8] CHEN Q, ZHENG A, XU X, et al. Nrf3-Mediated mitochondrial superoxide promotes cardiomyocyte apoptosis and impairs cardiac functions by suppressing Pitx2[J]. Circulation, 2025, 151(14): 1024-1046.
MitoPQ(MitoParaquat)是一种可选择性增加体内和细胞线粒体基质内超氧化物产生的线粒体靶向氧化还原循环剂[1]。MitoPQ 在线粒体基质中富集并通过复合物I的黄素位点的氧化还原循环产生O2-(图1)[1,2]。MitoPQ通常用于细胞或体内线粒体超氧化物产生在健康和疾病中作用的研究[3,4]。

图1. MitoPQ开发的基本原理[1,2]。MitoPQ由一个氧化还原循环的百草枯部分和将其连接到靶向线粒体的三苯基膦阳离子的疏水碳链组成。MitoPQ 由线粒体在血浆 (Δψp) 和线粒体 (Δψm) 膜电位的驱动下积累。在基质中,MitoPQ 中的双阳离子紫罗兰成分在复合物 I 的黄素位点通过单电子还原被还原为自由基单阳离子。然后,该自由基单阳离子与 O2 快速反应生成超氧化物。这种局部氧化还原循环导致线粒体基质内选择性产生超氧化物。
在体外,MitoPQ(5μM)处理C2C12成肌细胞20min,能时间依赖性地显著增加MitoSOX荧光强度,而同等条件下的Paraquat(PQ)在此时间范围内无法增加MitoSOX氧化。MitoPQ(1-10μM)处理HCT116细胞24h,能剂量依赖性地诱导细胞死亡,毒性远高于PQ[1]。MitoPQ(0.5μM)处理Raw264.7细胞16h,能显著破坏跨膜电位,而添加10mM N-acetylcysteine(NAC)可减弱MitoPQ的破坏作用[5]。MitoPQ(10μM)处理3T3-L1脂肪细胞2h,能特异性地增加线粒体超氧化物和过氧化氢,但不影响整体细胞呼吸[6]。
在体内,MitoPQ(0.16mg/kg)通过腹腔注射急性处理禁食16h的野生型小鼠,2h后显著损害了小鼠的葡萄糖耐受性。MitoPQ(0.16mg/kg)通过腹腔注射处理野生型小鼠1.5h,削弱了体内肝脏胰岛素信号传导(磷酸化胰岛素受体(IR)、AKT和GSK3α水平降低)[7]。MitoPQ(0.1mg/kg/day)通过腹腔注射处理心肌细胞特异性Nrf3敲除小鼠7天,小鼠的存活率显著降低,削弱了Nrf3基因缺失对心肌梗死后心脏功能和重塑的有益影响[8]。
|
Cell experiment [1]: |
|
|
Cell lines |
C2C12 cells (mouse myoblasts cell line) |
|
Preparation Method |
In C2C12 myoblasts, mitochondrial superoxide and hydrogen peroxide production were monitored by live cell imaging using the fluorescent dye MitoSOX. Individual cells were tracked through time, and fluorescence intensity was analyzed using Fiji imaging processing and analysis software. C2C12 cells were treated with 5μM MitoPQ or PQ, and changes in MitoSOX fluorescence intensity were observed over 20min. |
|
Reaction Conditions |
5μM; 20min |
|
Applications |
MitoPQ increased MitoSOX fluorescence, and this oxidation increased over time. In contrast, PQ was unable to increase MitoSOX oxidation over this timescale, even at a thousand times greater concentration than used for MitoPQ. |
|
Animal experiment [2]: |
|
|
Animal models |
C57BL/6J |
|
Preparation Method |
Mice were fasted for 16h and then received 0.16mg/kg MitoPQ by i.p. injection. 1.5h later, mice were anaesthetized with 100mg/kg ketamine and 10mg/kg xylazine and then injected with 0.75U/kg insulin into the portal vein. Livers were collected 3min later and immediately frozen in liquid N2. Epididymal adipose tissue and gastrocnemius were next collected and frozen until protein extraction. |
|
Dosage form |
0.16mg/kg; i.p. |
|
Applications |
MitoPQ decreased hepatic insulin signalling in vivo, as indicated by the reduced levels of phosphorylated insulin receptor (IR), AKT and GSK3α in the liver. |
|
References: [1] Robb EL, Gawel JM, Aksentijević D, Cochemé HM, Stewart TS, Shchepinova MM, Qiang H, Prime TA, Bright TP, James AM, Shattock MJ. Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat. Free Radical Biology and Medicine. 2015 Dec 1;89:883-94. [2] Goncalves RL, Wang ZB, Riveros JK, Parlakgül G, Inouye KE, Lee GY, Fu X, Saksi J, Rosique C, Hui ST, Coll M. CoQ imbalance drives reverse electron transport to disrupt liver metabolism. Nature. 2025 May 28:1-9. |
|
| Cas No. | 1821370-28-8 | SDF | |
| 别名 | MitoParaquat | ||
| 化学名 | 1-methyl-1'-(10-(triphenylphosphonio)decyl)-[4,4'-bipyridine]-1,1'-diium iodide | ||
| Canonical SMILES | C[N+](C=C1)=CC=C1C(C=C2)=CC=[N+]2CCCCCCCCCC[P+](C3=CC=CC=C3)(C4=CC=CC=C4)C5=CC=CC=C5.[I-].[I-].[I-] | ||
| 分子式 | C39H46N2P • 3I | 分子量 | 954.5 |
| 溶解度 | 10mM in ethanol or 100mM in DMSO | 储存条件 | Store at -20°C |
| General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
| Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 | ||
| 制备储备液 | |||
![]() |
1 mg | 5 mg | 10 mg |
| 1 mM | 1.0477 mL | 5.2383 mL | 10.4767 mL |
| 5 mM | 209.5 μL | 1.0477 mL | 2.0953 mL |
| 10 mM | 104.8 μL | 523.8 μL | 1.0477 mL |
| 第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
| 给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
| 第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
| % DMSO % % Tween 80 % saline | ||||||||||
| 计算重置 | ||||||||||
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
















