Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Isomaltose (6-O-α-D-Glucopyranosyl-D-glucose)

Isomaltose (6-O-α-D-Glucopyranosyl-D-glucose) Sale

(Synonyms: 异麦芽糖; 6-O-α-D-Glucopyranosyl-D-glucose; D-Isomaltose) 目录号 : GC31571

A natural disaccharide

Isomaltose (6-O-α-D-Glucopyranosyl-D-glucose) Chemical Structure

Cas No.:499-40-1

规格 价格 库存 购买数量
50mg
¥982.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Isomaltose is a glucose disaccharide with an α-(1→6) linkage, as opposed to the α-(1→4) linkage found in maltose. It can be liberated from dextran by dextranase and is hydrolyzed to D-glucose by isomaltase through an α-D-glucosidase-type action. Congenital sucrase-isomaltase deficiency is a rare autosomal intestinal disorder resulting from mutations affecting the gene encoding the proprotein from which sucrase and isomaltase are produced.1

1.Marcadier, J.L., Boland, M., Scott, C.R., et al.Congenital sucrase-isomaltase deficiency: Identification of a common Inuit founder mutationCMAJ187(2)102-107(2015)

Chemical Properties

Cas No. 499-40-1 SDF
别名 异麦芽糖; 6-O-α-D-Glucopyranosyl-D-glucose; D-Isomaltose
Canonical SMILES O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@@H]([C@@H](O)[C@H](O)[C@H]1O)CO
分子式 C12H22O11 分子量 342.3
溶解度 Water : 150 mg/mL (438.21 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.9214 mL 14.6071 mL 29.2141 mL
5 mM 0.5843 mL 2.9214 mL 5.8428 mL
10 mM 0.2921 mL 1.4607 mL 2.9214 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

NMR solution geometry of saccharides containing the 6-O-(α-D-glucopyranosyl)-α/β-D-glucopyranose (isomaltose) or 6-O-(α-D-galactopyranosyl)-α/β-D-glucopyranose (melibiose) core

The solution geometries of D-Glcp, Me-D-Glcp, 6-O-Me-D-Glcp, Me-6-O-Me-D-Glcp, D-Glcp-(α-1,6)-D-Glcp (isomaltose), D-Glcp-(α-1,6)-D-Glcp-(α-1,6)-D-Glcp (isomaltotriose), D-Galp-(α-1,6)-D-Glcp (melibiose), D-Galp-(α-1,6)-D-Glcp-(α-1,2)-D-Fruf (raffinose), and D-Galp-(α-1,6)-D-Galp-(α-1,6)-D-Glcp-(α-1,2)-D-Fruf (stachyose) in water are described by NMR spectroscopy, molecular dynamic simulations and quantum mechanical calculations. Overall, a change in anomeric configuration at the reducing end and/or anomeric substitution (methylation) changed the conformational space of the terminal CH2OH group significantly. Conformational analysis of the free monosaccharides matched literature results very well. Dihedral angle histograms weighted against published Karplus equations yielded excellent matches of experimental J-values in some cases but significant deviations in other. The anomeric hemiacetal configuration appeared to have a significant remote influence on the conformational space of the α-1,6-glycosidic linkage. Rigid glycosidic φ-conformations (g+) combined with mostly st-conformations for glycosidic ψ-angles from computations matched experimental nuclear Overhauser enhancements in all cases. While the investigated Glcp-α-1,6-Glcp linkages were nearly identical in φ/ψ-conformation, differences were apparent in the Galp-α-1,6-Galp linkage of stachyose. Of twenty-one crystal structures, a total of fourteen had ligand conformations corresponding to the most abundant or second-most abundant solution geometry determined in this study.

Isomerization of 6-O-substituted glucose and fructose under neutral pH conditions and subsequent β-elimination reactions

Isomaltose (6-O-α-d-glucopyranosyl-d-glucose) and isomaltulose (palatinose; 6-O-β-d-glucopyranosyl-d-fructose) were heated to 90 °C in 100 mM sodium phosphate buffer (pH 7.5). Aldose-ketose isomerization between isomaltose, isomaltulose, and epi-isomaltulose was observed in the early stage of the reaction, alongside the release of a small amount of glucose. The total concentration of these disaccharides gradually decreased as the heating time increased. However, this decrease did not correlate with the amount of glucose or fructose released, suggesting that the releases of these monosaccharides were not caused by the hydrolysis of glycosidic linkages. A slight decrease in the pH of the reaction solution was attributed to the formation of two organic acids, 6-O-β-d-glucopyranosyl-3-deoxy-d-arabino-hexonic acid (1) and 6-O-β-d-glucopyranosyl-3-deoxy-d-ribo-hexonic acid (2). These compounds were formed from the β-elimination of the hydroxyl group at the C-3 of fructose, leaving a substituted glucose residue at the C-6 position, followed by keto-enol tautomerization and benzilic acid rearrangement. Although approximately 30% of 1 and 2 were degraded after 360 min of heating at 90 °C in 100 mM sodium phosphate, a little release of glucose was observed, indicating no hydrolysis of the glucoside bond at C-6. Besides 1 and 2, time-dependent changes in the NMR spectra of the reaction mixture in water indicated the formation of formic acid and the presence of species possibly resulting from the β-elimination of the hydroxyl group from 3- and 4-ulose. The glucose released by heating isomaltose and isomaltulose may be generated via tautomerizations of keto-enols between the C-4 and C-5 positions and cleavage of 6-O-glycosidic linkage via β-elimination.

Regiospecific transglycolytic synthesis and structural characterization of 6-O-alpha-glucopyranosyl-glucopyranose (isomaltose)

The enzymatic synthesis of 6-O-alpha-glucopyranosyl-glucopyranose (isomaltose) was achieved. The regiospecific transglycosylation reaction was catalyzed by a crude preparation of alpha-D-glucosidase from Aspergillus niger, using p-nitrophenyl alpha-D-glucopyranose as the donor and glucopyranose as the acceptor. The yield of the reaction was 59% on a molar basis with respect to the donor. The structural identity of the product was fully determined by HPLC, HPAEC-PAD, ionspray mass spectrometry and (13)C NMR.

Oligosaccharide synthesis on a light-sensitive solid support. I. The polymer and synthesis of isomaltose (6-O-alpha-D-glucopyranosyl-D-glucose)

Synthesis of methyl 6''-deoxy-6'-fluoro-alpha-isomaltoside and of the corresponding trisaccharide

Methyl 6-O-(6-O-acetyl-2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl)-2,3,4-tri- O-benzyl-alpha-D-glucopyranoside (5) was formed with high stereoselectivity when the condensation of methyl 2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl (1) with 6-O-acetyl-2,3,4-tri-O-benzyl-alpha-D-glucopyranosyl chloride in ether was promoted with silver perchlorate in the presence of 2,4,6-trimethylpyridine. O-Deacetylation of 5, followed by treatment of the formed 6, containing only HO-6' unsubstituted, with diethylaminosulfur trifluoride (DAST) or dimethylaminosulfur trifluoride (methyl DAST) gave the per-O-benzyl derivative (9) of methyl 6'-deoxy-6'-fluoro-alpha-isomaltoside. Compound 9 was also obtained by condensation of 1 with 2,3,4-tri-O-benzyl-6-deoxy-6-fluoro-beta-D-glucopyranosyl fluoride (4) in the presence of silver perchlorate and anhydrous stannous chloride. The fully benzylated methyl alpha-glycoside (15) of 6-deoxy-6-fluoro-isomaltotriose, was obtained by condensation of 6 with 4. Hydrogenolysis of 9 and 15 gave the methyl alpha-glycosides of isomaltose and isomaltotriose fluorinated at C-6 of their (nonreducing) D-glucosyl group. Fluoride-ion displacements involving DAST and methyl DAST gave practically identical results, but mixtures arising from reactions involving the latter reagent were lighter-colored and easier to resolve by chromatography. The isolation of methyl alpha-glycosides of 6'-deoxy-6'-fluorogentiobiose and of 6'-O-(6-deoxy-6-fluoro-beta-D-glucopyranosyl) isomaltose is also described.