Home>>Signaling Pathways>> Ubiquitination/ Proteasome>> Autophagy>>PF-04457845

PF-04457845 Sale

(Synonyms: N-哒嗪-3-基-4-(3-{[5-(三氟甲基)吡啶-2-基]醚}苯亚甲基丙酮)哌啶-1-羧酰胺) 目录号 : GC36879

A selective FAAH inhibitor

PF-04457845 Chemical Structure

Cas No.:1020315-31-4

规格 价格 库存 购买数量
Free Sample (0.1-0.5 mg) 待询 待询
10mM (in 1mL DMSO)
¥549.00
现货
5mg
¥495.00
现货
10mg
¥855.00
现货
25mg
¥1,800.00
现货
50mg
¥2,700.00
现货
100mg
¥3,169.00
现货
200mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Kinase experiment:

The IC50 values for the inhibition of hFAAH and rFAAH by PF-04457845 is determined. PF-04457845 is preincubated with FAAH for 60 min before initiating the reaction by the addition of the substrate oleamide. Mouse and human tissues are prepared and inhibitor selectivity is assessed by competitive activity-based protein profiling[1].

Animal experiment:

Rats[1] PF-04457845 is administered orally to male Sprague-Dawley rats (200g-250g) at the indicated dose (mg/kg) as a nanocrystalline suspension in 2% polyvinylpyrrolidone and 0.15% sodium dodecyl sulfate in H2O. The dose volume is 10 mL/kg. The Paw Withdrawal Threshold (PWT) is evaluated at 4 h post dose. PWT measurements are averaged and statistical comparisons between groups are made using analysis of variance and unpaired T-tests.Mice[2] Male C57BL6/J mice (7 weeks old; n=8) are treated with PF-04457845 (1 or 10 mg/kg in polyethyleneglycol 300 vehicle by oral administration in a volume of 4 mL/kg), the synthetic cannabinoid agonist WIN 55,212-2 (1 or 10 mg/kg in 18:1:1 saline/Emulphor/ethanol vehicle by intraperitoneal administration in a volume of 10 mL/kg), or the corresponding vehicle. Mice are evaluated for hypomotility, hypothermia, antinociceptive, and cataleptic effects at 4 h or 30 min after PF-04457845 or WIN 55,212-2 administration, respectively, using the tetrad tests except that catalepsy is assessed for 60 s instead of 10 s. Statistical analysis is performed using the Student's t test comparing each treatment group with vehicle.

References:

[1]. Johnson DS, et al. Discovery of PF-04457845: A Highly Potent, Orally Bioavailable, and Selective Urea FAAH Inhibitor. ACS Med Chem Lett. 2011 Feb 10;2(2):91-96.
[2]. Ahn K, et al. Mechanistic and pharmacological characterization of PF-04457845: a highly potent and selective fatty acid amide hydrolase inhibitor that reduces inflammatory and noninflammatory pain. J Pharmacol Exp Ther. 2011 Jul;338(1):114-24.
[3]. Buntyn RW, et al. Inhibition of Endocannabinoid-Metabolizing Enzymes in Peripheral Tissues Following Developmental Chlorpyrifos Exposure in Rats. Int J Toxicol. 2017 Jan 1:1091581817725272.

产品描述

PF-04457845 is an orally active, irreversible inhibitor of fatty acid amide hydrolase (FAAH; IC50 = 7.2 nM) that is selective against other serine hydrolases.1 It is a covalent inhibitor that carbamylates the active site serine nucleophile of FAAH.1 In a rat model of inflammatory pain, oral administration of 0.1 mg/kg PF-04457845 has been shown to reduce inflammatory pain with efficacy comparable to that of naproxen.1

1.Johnson, D.S., Stiff, C., Lazerwith, S.E., et al.Discovery of PF-04457845: A highly potent, orally bioavailable, and selective urea FAAH inhibitorACS Med. Chem. Lett.2(2)91-96(2011)

Chemical Properties

Cas No. 1020315-31-4 SDF
别名 N-哒嗪-3-基-4-(3-{[5-(三氟甲基)吡啶-2-基]醚}苯亚甲基丙酮)哌啶-1-羧酰胺
Canonical SMILES O=C(NC1=NN=CC=C1)N(CC/2)CCC2=C\C3=CC=CC(OC4=NC=C(C(F)(F)F)C=C4)=C3
分子式 C23H20F3N5O2 分子量 455.43
溶解度 DMSO: ≥ 100 mg/mL (219.57 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.1957 mL 10.9786 mL 21.9573 mL
5 mM 0.4391 mL 2.1957 mL 4.3915 mL
10 mM 0.2196 mL 1.0979 mL 2.1957 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Synthesis and preclinical evaluation of [11C-carbonyl]PF-04457845 for neuroimaging of fatty acid amide hydrolase

Nucl Med Biol 2013 Aug;40(6):740-6.PMID:23731552DOI:10.1016/j.nucmedbio.2013.04.008.

Introduction: Fatty acid amide hydrolase (FAAH) has a significant role in regulating endocannabinoid signaling in the central nervous system. As such, FAAH inhibitors are being actively sought for pain, addiction, and other indications. This has led to the recent pursuit of positron emission tomography (PET) radiotracers targeting FAAH. We report herein the preparation and preclinical evaluation of [(11)C-carbonyl]PF-04457845, an isotopologue of the potent irreversible FAAH inhibitor. Methods: PF-04457845 was radiolabeled at the carbonyl position via automated [(11)C]CO(2)-fixation. Ex vivo brain biodistribution of [(11)C-carbonyl]PF-04457845 was carried out in conscious rats. Specificity was determined by pre-administration of PF-04457845 or URB597 prior to [(11)C-carbonyl]PF-04457845. In a separate experiment, rats injected with the title radiotracer had whole brains excised, homogenized and extracted to examine irreversible binding to brain parenchyma. Results: The title compound was prepared in 5 ± 1% (n = 4) isolated radiochemical yield based on starting [(11)C]CO(2) (decay uncorrected) within 25 min from end-of-bombardment in >98% radiochemical purity and a specific activity of 73.5 ± 8.2 GBq/μmol at end-of-synthesis. Uptake of [(11)C-carbonyl]PF-04457845 into the rat brain was high (range of 1.2-4.4 SUV), heterogeneous, and in accordance with reported FAAH distribution. Saturable binding was demonstrated by a dose-dependent reduction in brain radioactivity uptake following pre-treatment with PF-04457845. Pre-treatment with the prototypical FAAH inhibitor, URB597, reduced the brain radiotracer uptake in all regions by 71-81%, demonstrating specificity for FAAH. The binding of [(11)C-carbonyl]PF-04457845 to FAAH at 40 min post injection was irreversible as 98% of the radioactivity in the brain could not be extracted. Conclusions: [(11)C-carbonyl]PF-04457845 was rapidly synthesized via an automated radiosynthesis. Ex vivo biodistribution studies in conscious rodents demonstrate that [11C PF-04457845 is a promising candidate radiotracer for imaging FAAH in the brain with PET. These results coupled with the known pharmacology and toxicology of PF-04457845 should facilitate clinical translation of this radiotracer.

Efficacy and safety of a fatty acid amide hydrolase inhibitor (PF-04457845) in the treatment of cannabis withdrawal and dependence in men: a double-blind, placebo-controlled, parallel group, phase 2a single-site randomised controlled trial

Lancet Psychiatry 2019 Jan;6(1):35-45.PMID:30528676DOI:10.1016/S2215-0366(18)30427-9.

Background: Cannabis is one of the most widely used drugs worldwide. Cannabis use disorder is characterised by recurrent use of cannabis that causes significant clinical and functional impairment. There are no approved pharmacological treatments for cannabis use disorder. One approach is to potentiate endocannabinoid signalling by inhibiting fatty acid amide hydrolase (FAAH), the enzyme that degrades the endocannabinoid anandamide. We aimed to test the efficacy and safety of the FAAH-inhibitor PF-04457845 in reduction of cannabis withdrawal and cannabis use in men who were daily cannabis users. Methods: We did a double-blind, placebo-controlled, parallel group phase 2a trial at one site in men aged 18-55 years with cannabis dependence according to DSM-IV criteria (equivalent to cannabis use disorder in DSM-5). After baseline assessments, participants were randomly assigned (2:1) to receive PF-04457845 (4 mg per day) or placebo using a fixed block size of six participants, stratified by severity of cannabis use and desire to quit. Participants were admitted to hospital for 5 days (maximum 8 days) to achieve abstinence and precipitate cannabis withdrawal, after which they were discharged to continue the remaining 3 weeks of treatment as outpatients. The primary endpoints were treatment-related differences in cannabis withdrawal symptoms during hospital admission, and week 4 (end of treatment) self-reported cannabis use and urine THC-COOH concentrations in the intention-to-treat population. The study is registered at ClinicalTrials.gov, number NCT01618656. Findings: Between Sept 12, 2012, and Jan 18, 2016, 46 men were randomly assigned to PF-04457845 and 24 to placebo. Adherence to study medication was 88%, as confirmed by video-calling and pill count, and corroborated by corresponding drug and anandamide concentrations in blood. Relative to placebo, treatment with PF-04457845 was associated with reduced symptoms of cannabis withdrawal (first day of treatment mean symptom score 11·00 [95% CI 7·78-15·57] vs 6·04 [4·43-8·24]; difference 4·96 [0·71-9·21]; padj=0·048; second day of treatment 11·74 [8·28-16·66] vs 6·02 [4·28-8·47]; difference 5·73 [1·13-10·32]; padj=0·035) and related mood symptoms during the inpatient phase. Additionally, treatment with PF-04457845 was associated with lower self-reported cannabis use at 4 weeks (mean 1·27 joints per day [95% CI 0·82-1·97] vs 0·40 [0·25-0·62]; difference 0·88 [0·29-1·46]; p=0·0003) and lower urinary THC-COOH concentrations (mean 657·92 ng/mL [95% CI 381·60-1134·30] vs 265·55 [175·60-401·57]; difference 392·37 [17·55-767·18)]; p=0·009). Eight (17%) patients in the PF-04457845 group and four (17%) in the placebo group discontinued during the treatment period. During the 4-week treatment phase, 20 (43%) of 46 participants in the PF-04457845 group and 11 (46%) of 24 participants in the placebo group had an adverse event. There were no serious adverse events. Interpretation: PF-04457845, a novel FAAH inhibitor, reduced cannabis withdrawal symptoms and cannabis use in men, and might represent an effective and safe approach for the treatment of cannabis use disorder. Funding: United States National Institute of Drug Abuse (NIDA).

Assessment of the pharmacology and tolerability of PF-04457845, an irreversible inhibitor of fatty acid amide hydrolase-1, in healthy subjects

Br J Clin Pharmacol 2012 May;73(5):706-16.PMID:22044402DOI:10.1111/j.1365-2125.2011.04137.x.

AIMS To evaluate the pharmacology and tolerability of PF-04457845, an orally available fatty acid amide hydrolase-1 (FAAH1) inhibitor, in healthy subjects. Methods: Double-blind, randomized, placebo-controlled single and multiple rising dose studies and an open-label, randomized, food effect study were conducted. Plasma and urine PF-04457845 concentrations, plasma fatty acid amide concentrations and FAAH1 activity in human leucocytes were measured. Tolerability, including effects on cognitive function, were assessed. Results: PF-04457845 was rapidly absorbed (median t(max) 0.5-1.2 h). Exposure increased supraproportionally to dose from 0.1 to 10 mg and proportionally between 10 and 40 mg single doses. The pharmacokinetics appeared dose proportional following 14 days once daily dosing between 0.5 and 8 mg. Steady-state was achieved by day 7. Less than 0.1% of the dose was excreted in urine. Food had no effect on PF-04457845 pharmacokinetics. FAAH1 activity was almost completely inhibited (>97%) following doses of at least 0.3 mg (single dose) and 0.5 mg once daily (multiple dose) PF-04457845. Mean fatty acid amide concentrations increased (3.5- to 10-fold) to a plateau and then were maintained following PF-04457845. FAAH1 activity and fatty acid amide concentrations returned to baseline within 2 weeks following cessation of dosing at doses up to 4 mg. There was no evidence of effects of PF-04457845 on cognitive function. PF-04457845, at doses up to 40 mg single dose and 8 mg once daily for 14 days, was well tolerated. Conclusions: PF-04457845 was well tolerated at doses exceeding those required for maximal inhibition of FAAH1 activity and elevation of fatty acid amides.

Mechanistic and pharmacological characterization of PF-04457845: a highly potent and selective fatty acid amide hydrolase inhibitor that reduces inflammatory and noninflammatory pain

J Pharmacol Exp Ther 2011 Jul;338(1):114-24.PMID:21505060DOI:10.1124/jpet.111.180257.

The endogenous cannabinoid (endocannabinoid) anandamide is principally degraded by the integral membrane enzyme fatty acid amide hydrolase (FAAH). Pharmacological blockade of FAAH has emerged as a potentially attractive strategy for augmenting endocannabinoid signaling and retaining the beneficial effects of cannabinoid receptor activation, while avoiding the undesirable side effects, such as weight gain and impairments in cognition and motor control, observed with direct cannabinoid receptor 1 agonists. Here, we report the detailed mechanistic and pharmacological characterization of N-pyridazin-3-yl-4-(3-{[5-(trifluoromethyl)pyridin-2-yl]oxy}benzylidene)piperidine-1-carboxamide (PF-04457845), a highly efficacious and selective FAAH inhibitor. Mechanistic studies confirm that PF-04457845 is a time-dependent, covalent FAAH inhibitor that carbamylates FAAH's catalytic serine nucleophile. PF-04457845 inhibits human FAAH with high potency (k(inact)/K(i) = 40,300 M(-1)s(-1); IC(50) = 7.2 nM) and is exquisitely selective in vivo as determined by activity-based protein profiling. Oral administration of PF-04457845 produced potent antinociceptive effects in both inflammatory [complete Freund's adjuvant (CFA)] and noninflammatory (monosodium iodoacetate) pain models in rats, with a minimum effective dose of 0.1 mg/kg (CFA model). PF-04457845 displayed a long duration of action as a single oral administration at 1 mg/kg showed in vivo efficacy for 24 h with a concomitant near-complete inhibition of FAAH activity and maximal sustained elevation of anandamide in brain. Significantly, PF-04457845-treated mice at 10 mg/kg elicited no effect in motility, catalepsy, and body temperature. Based on its exceptional selectivity and in vivo efficacy, combined with long duration of action and optimal pharmacokinetic properties, PF-04457845 is a clinical candidate for the treatment of pain and other nervous system disorders.

Discovery of PF-04457845: A Highly Potent, Orally Bioavailable, and Selective Urea FAAH Inhibitor

ACS Med Chem Lett 2011 Feb 10;2(2):91-96.PMID:21666860DOI:10.1021/ml100190t.

Fatty acid amide hydrolase (FAAH) is an integral membrane serine hydrolase that degrades the fatty acid amide family of signaling lipids, including the endocannabinoid anandamide. Genetic or pharmacological inactivation of FAAH leads to analgesic and anti-inflammatory phenotypes in rodents without showing the undesirable side effects observed with direct cannabinoid receptor agonists, indicating that FAAH may represent an attractive therapeutic target for the treatment of inflammatory pain and other nervous system disorders. Herein, we report the discovery and characterization of a highly efficacious and selective FAAH inhibitor PF-04457845 (23). Compound 23 inhibits FAAH by a covalent, irreversible mechanism involving carbamylation of the active-site serine nucleophile of FAAH with high in vitro potency (k(inact)/K(i) and IC(50) values of 40300 M(-1) s(-1) and 7.2 nM, respectively, for human FAAH). Compound 23 has exquisite selectivity for FAAH relative to other members of the serine hydrolase superfamily as demonstrated by competitive activity-based protein profiling. Oral administration of 23 at 0.1 mg/kg results in efficacy comparable to that of naproxen at 10 mg/kg in a rat model of inflammatory pain. Compound 23 is being evaluated in human clinical trials.