Home>>Signaling Pathways>> Microbiology & Virology>> Parasite>>ELQ-300

ELQ-300 Sale

目录号 : GC35974

ELQ-300 是一种有效、有口服生物活性的抗疟疾剂,结合并抑制细胞色素 bc1 复合物 (cyt bc1) 的还原 (Qi) 位点。

ELQ-300 Chemical Structure

Cas No.:1354745-52-0

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥1,413.00
现货
5mg
¥1,350.00
现货
10mg
¥2,160.00
现货
50mg
¥6,930.00
现货
100mg
¥10,800.00
现货
200mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

ELQ-300 is a potent and orally bioavailable antimalarial agent, acts as an inhibitor of the reductive (Qi) site of the cytochrome bc1 complex (cyt bc1)[1]. ELQ-300 sensitizes P. falciparum Dd2, Tm90-C2B, and D1 strains with IC50s of 6.6, 4.6 and 160 nM, respectively[1].

[1]. Stickles AM, et al. Subtle changes in endochin-like quinolone structure alter the site of inhibition within the cytochrome bc1 complex of Plasmodium falciparum. Antimicrob Agents Chemother. 2015 Apr;59(4):1977-82.

Chemical Properties

Cas No. 1354745-52-0 SDF
Canonical SMILES O=C1C(C2=CC=C(OC3=CC=C(OC(F)(F)F)C=C3)C=C2)=C(C)NC4=C1C=C(Cl)C(OC)=C4
分子式 C24H17ClF3NO4 分子量 475.84
溶解度 DMSO: 15.62 mg/mL (32.83 mM); Water: < 0.1 mg/mL (insoluble) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.1015 mL 10.5077 mL 21.0155 mL
5 mM 0.4203 mL 2.1015 mL 4.2031 mL
10 mM 0.2102 mL 1.0508 mL 2.1015 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

A New Scalable Synthesis of ELQ-300, ELQ-316, and other Antiparasitic Quinolones

Org Process Res Dev 2021 Aug 20;25(8):1841-1852.PMID:35110959DOI:10.1021/acs.oprd.1c00099.

The Endochin-Like Quinolone (ELQ) compound class may yield effective, safe treatments for a range of important human and animal afflictions. However, to access the public health potential of this compound series, a synthetic route needed to be devised that lowers costs and is amenable to large scale production. In the new synthetic route described here, a substituted β-keto ester, formed by an Ullmann reaction and subsequent acylation, is reacted with an aniline via a Conrad-Limpach reaction to produce 3-substituted 4(1H)-quinolones such as ELQ-300 and ELQ-316. This synthetic route, the first described to be truly amenable to industrial scale production, is relatively short (5 reaction steps), does not require palladium, chromatographic separation or protecting group chemistry, and may be performed without high vacuum distillation.

ELQ-300 prodrugs for enhanced delivery and single-dose cure of malaria

Antimicrob Agents Chemother 2015 Sep;59(9):5555-60.PMID:26124159DOI:10.1128/AAC.01183-15.

ELQ-300 is a preclinical candidate that targets the liver and blood stages of Plasmodium falciparum, as well as the forms that are crucial to transmission of disease: gametocytes, zygotes, and ookinetes. A significant obstacle to the clinical development of ELQ-300 is related to its physicochemical properties. Its relatively poor aqueous solubility and high crystallinity limit absorption to the degree that only low blood concentrations can be achieved following oral dosing. While these low blood concentrations are sufficient for therapy, the levels are too low to establish an acceptable safety margin required by regulatory agencies for clinical development. One way to address the challenging physicochemical properties of ELQ-300 is through the development of prodrugs. Here, we profile ELQ-337, a bioreversible O-linked carbonate ester prodrug of the parent molecule. At the molar equivalent dose of 3 mg/kg of body weight, the delivery of ELQ-300 from ELQ-337 is enhanced by 3- to 4-fold, reaching a maximum concentration of drug in serum (C max) of 5.9 μM by 6 h after oral administration, and unlike ELQ-300 at any dose, ELQ-337 provides single-dose cures of patent malaria infections in mice at low-single-digit milligram per kilogram doses. Our findings show that the prodrug strategy represents a viable approach to overcome the physicochemical limitations of ELQ-300 to deliver the active drug to the bloodstream at concentrations sufficient for safety and toxicology studies, as well as achieving single-dose cures.

Endochin-like quinolone-300 and ELQ-316 inhibit Babesia bovis, B. bigemina, B. caballi and Theileria equi

Parasit Vectors 2020 Dec 3;13(1):606.PMID:33272316DOI:10.1186/s13071-020-04487-3.

Background: The most common apicomplexan parasites causing bovine babesiosis are Babesia bovis and B. bigemina, while B. caballi and Theileria equi are responsible for equine piroplasmosis. Treatment and control of these diseases are usually achieved using potentially toxic chemotherapeutics, such as imidocarb diproprionate, but drug-resistant parasites are emerging, and alternative effective and safer drugs are needed. The endochin-like quinolones (ELQ)-300 and ELQ-316 have been proven to be safe and efficacious against related apicomplexans, such as Plasmodium spp., with ELQ-316 also being effective against Babesia microti, without showing toxicity in mammals. Methods: The inhibitory effects of ELQ-300 and ELQ-316 were assessed on the growth of cultured B. bovis, B. bigemina, B. caballi and T. equi. The percentage of parasitized erythrocytes was measured by flow cytometry, and the effect of the ELQ compounds on the viability of horse and bovine peripheral blood mononuclear cells (PBMC) was assessed by monitoring cell metabolic activity using a colorimetric assay. Results: We calculated the half maximal inhibitory concentration (IC50) at 72 h, which ranged from 0.04 to 0.37 nM for ELQ-300, and from 0.002 to 0.1 nM for ELQ-316 among all cultured parasites tested at 72 h. None of the parasites tested were able to replicate in cultures in the presence of ELQ-300 and ELQ-316 at the maximal inhibitory concentration (IC100), which ranged from 1.3 to 5.7 nM for ELQ-300 and from 1.0 to 6.0 nM for ELQ-316 at 72 h. Neither ELQ-300 nor ELQ-316 altered the viability of equine and bovine PBMC at their IC100 in in vitro testing. Conclusions: The compounds ELQ-300 and ELQ-316 showed significant inhibitory activity on the main parasites responsible for bovine babesiosis and equine piroplasmosis at doses that are tolerable to host cells. These ELQ drugs may be viable candidates for developing alternative protocols for the treatment of bovine babesiosis and equine piroplasmosis.

Atovaquone and ELQ-300 Combination Therapy as a Novel Dual-Site Cytochrome bc1 Inhibition Strategy for Malaria

Antimicrob Agents Chemother 2016 Jul 22;60(8):4853-9.PMID:27270285DOI:10.1128/AAC.00791-16.

Antimalarial combination therapies play a crucial role in preventing the emergence of drug-resistant Plasmodium parasites. Although artemisinin-based combination therapies (ACTs) comprise the majority of these formulations, inhibitors of the mitochondrial cytochrome bc1 complex (cyt bc1) are among the few compounds that are effective for both acute antimalarial treatment and prophylaxis. There are two known sites for inhibition within cyt bc1: atovaquone (ATV) blocks the quinol oxidase (Qo) site of cyt bc1, while some members of the endochin-like quinolone (ELQ) family, including preclinical candidate ELQ-300, inhibit the quinone reductase (Qi) site and retain full potency against ATV-resistant Plasmodium falciparum strains with Qo site mutations. Here, we provide the first in vivo comparison of ATV, ELQ-300, and combination therapy consisting of ATV plus ELQ-300 (ATV:ELQ-300), using P. yoelii murine models of malaria. In our monotherapy assessments, we found that ATV functioned as a single-dose curative compound in suppressive tests whereas ELQ-300 demonstrated a unique cumulative dosing effect that successfully blocked recrudescence even in a high-parasitemia acute infection model. ATV:ELQ-300 therapy was highly synergistic, and the combination was curative with a single combined dose of 1 mg/kg of body weight. Compared to the ATV:proguanil (Malarone) formulation, ATV:ELQ-300 was more efficacious in multiday, acute infection models and was equally effective at blocking the emergence of ATV-resistant parasites. Ultimately, our data suggest that dual-site inhibition of cyt bc1 is a valuable strategy for antimalarial combination therapy and that Qi site inhibitors such as ELQ-300 represent valuable partner drugs for the clinically successful Qo site inhibitor ATV.

ELQ-331 as a prototype for extremely durable chemoprotection against malaria

Malar J 2019 Aug 27;18(1):291.PMID:31455339DOI:10.1186/s12936-019-2921-9.

Background: The potential benefits of long-acting injectable chemoprotection (LAI-C) against malaria have been recently recognized, prompting a call for suitable candidate drugs to help meet this need. On the basis of its known pharmacodynamic and pharmacokinetic profiles after oral dosing, ELQ-331, a prodrug of the parasite mitochondrial electron transport inhibitor ELQ-300, was selected for study of pharmacokinetics and efficacy as LAI-C in mice. Methods: Four trials were conducted in which mice were injected with a single intramuscular dose of ELQ-331 or other ELQ-300 prodrugs in sesame oil with 1.2% benzyl alcohol; the ELQ-300 content of the doses ranged from 2.5 to 30 mg/kg. Initial blood stage challenges with Plasmodium yoelii were used to establish the model, but the definitive study measure of efficacy was outcome after sporozoite challenge with a luciferase-expressing P. yoelii, assessed by whole-body live animal imaging. Snapshot determinations of plasma ELQ-300 concentration ([ELQ-300]) were made after all prodrug injections; after the highest dose of ELQ-331 (equivalent to 30 mg/kg ELQ-300), both [ELQ-331] and [ELQ-300] were measured at a series of timepoints from 6 h to 5½ months after injection. Results: A single intramuscular injection of ELQ-331 outperformed four other ELQ-300 prodrugs and, at a dose equivalent to 30 mg/kg ELQ-300, protected mice against challenge with P. yoelii sporozoites for at least 4½ months. Pharmacokinetic evaluation revealed rapid and essentially complete conversion of ELQ-331 to ELQ-300, a rapidly achieved (< 6 h) and sustained (4-5 months) effective plasma ELQ-300 concentration, maximum ELQ-300 concentrations far below the estimated threshold for toxicity, and a distinctive ELQ-300 concentration versus time profile. Pharmacokinetic modeling indicates a high-capacity, slow-exchange tissue compartment which serves to accumulate and then slowly redistribute ELQ-300 into blood, and this property facilitates an extremely long period during which ELQ-300 concentration is sustained above a minimum fully-protective threshold (60-80 nM). Conclusions: Extrapolation of these results to humans predicts that ELQ-331 should be capable of meeting and far-exceeding currently published duration-of-effect goals for anti-malarial LAI-C. Furthermore, the distinctive pharmacokinetic profile of ELQ-300 after treatment with ELQ-331 may facilitate durable protection and enable protection for far longer than 3 months. These findings suggest that ELQ-331 warrants consideration as a leading prototype for LAI-C.