Home>>Signaling Pathways>> Metabolism>> Factor Xa>>BMS-962212

BMS-962212 Sale

目录号 : GC35536

BMS-962212 是直接的,可逆的,选择性 FXIa 抑制剂。 BMS-962212 具有良好的耐受性,快速起效的药效 (PD) 反应和快速消除。 BMS-962212 在活化的部分促凝血酶原激酶时间内依赖性地增加暴露,并且在 FXI 凝血活性中依赖性地降低暴露。

BMS-962212 Chemical Structure

Cas No.:1430114-34-3

规格 价格 库存 购买数量
1mg 待询 待询
5mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

BMS-962212 is a direct, reversible, selective factor XIa (FXIa) inhibitor . BMS-962212 is well tolerated, with fast onset of pharmacodynamic (PD) responses and rapid elimination. BMS-962212 increases exposure dependently in activated partial thromboplastin time, and decreases exposure dependently in FXI clotting activity[1].

[1]. Perera V, et al. First-in-human study to assess the safety, pharmacokinetics and pharmacodynamics of BMS-962212, a direct, reversible, small molecule factor XIa inhibitor in non-Japanese and Japanese healthy subjects. Br J Clin Pharmacol. 2018 May;84(5):876-887.

Chemical Properties

Cas No. 1430114-34-3 SDF
Canonical SMILES ClC1=C(F)C(/C=C/C(N2[C@H](C(NC3=CC=C(C(O)=O)C=C3)=O)C(C=CC=C4N5C(CN(C)CC5)=O)=C4CC2)=O)=C(N6C=NN=N6)C=C1
分子式 C32H28ClFN8O5 分子量 659.07
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.5173 mL 7.5864 mL 15.1729 mL
5 mM 0.3035 mL 1.5173 mL 3.0346 mL
10 mM 0.1517 mL 0.7586 mL 1.5173 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

First-in-human study to assess the safety, pharmacokinetics and pharmacodynamics of BMS-962212, a direct, reversible, small molecule factor XIa inhibitor in non-Japanese and Japanese healthy subjects

Br J Clin Pharmacol 2018 May;84(5):876-887.PMID:29346838DOI:10.1111/bcp.13520.

Aims: The aims of the present study were to assess the safety, pharmacokinetics (PK) and pharmacodynamics (PD) of BMS-962212, a first-in-class factor XIa inhibitor, in Japanese and non-Japanese healthy subjects. Methods: This was a randomized, placebo-controlled, double-blind, sequential, ascending-dose study of 2-h (part A) and 5-day (part B) intravenous (IV) infusions of BMS-962212. Part A used four doses (1.5, 4, 10 and 25 mg h-1 ) of BMS-962212 or placebo in a 6:2 ratio per dose. Part B used four doses (1, 3, 9 and 20 mg h-1 ) enrolling Japanese (n = 4 active, n = 1 placebo) and non-Japanese (n = 4 active, n = 1 placebo) subjects per dose. The PK, PD, safety and tolerability were assessed throughout the study. Results: BMS-962212 was well tolerated; there were no signs of bleeding, and adverse events were mild. In parts A and B, BMS-962212 demonstrated dose proportionality. The mean half-life in parts A and B ranged from 2.04 to 4.94 h and 6.22 to 8.65 h, respectively. Exposure-dependent changes were observed in the PD parameters, activated partial thromboplastin time (aPTT) and factor XI clotting activity (FXI:C). The maximum mean aPTT and FXI:C change from baseline at 20 mg h-1 in part B was 92% and 90%, respectively. No difference was observed in weight-corrected steady-state concentrations, aPTT or FXI:C between Japanese and non-Japanese subjects (P > 0.05). Conclusion: BMS-962212 has tolerability, PK and PD properties suitable for investigational use as an acute antithrombotic agent in Japanese or non-Japanese subjects.

Discovery of a Parenteral Small Molecule Coagulation Factor XIa Inhibitor Clinical Candidate (BMS-962212)

J Med Chem 2017 Dec 14;60(23):9703-9723.PMID:29077405DOI:10.1021/acs.jmedchem.7b01171.

Factor XIa (FXIa) is a blood coagulation enzyme that is involved in the amplification of thrombin generation. Mounting evidence suggests that direct inhibition of FXIa can block pathologic thrombus formation while preserving normal hemostasis. Preclinical studies using a variety of approaches to reduce FXIa activity, including direct inhibitors of FXIa, have demonstrated good antithrombotic efficacy without increasing bleeding. On the basis of this potential, we targeted our efforts at identifying potent inhibitors of FXIa with a focus on discovering an acute antithrombotic agent for use in a hospital setting. Herein we describe the discovery of a potent FXIa clinical candidate, 55 (FXIa Ki = 0.7 nM), with excellent preclinical efficacy in thrombosis models and aqueous solubility suitable for intravenous administration. BMS-962212 is a reversible, direct, and highly selective small molecule inhibitor of FXIa.

The effect of water on the large-scale supercritical fluid chromatography purification of two factor XIa active pharmaceutical ingredients

J Chromatogr A 2021 Aug 16;1651:462318.PMID:34161834DOI:10.1016/j.chroma.2021.462318.

BMS-962212, a parenteral Factor XIa inhibitor, was scaled-up for toxicity studies. Two steps of supercritical fluid chromatography (SFC) were developed for the chiral resolution of the penultimate and achiral purification of final active pharmaceutical ingredient (API), BMS-962212. A robust SFC process using Chiralcel OD-H with methanol-acetonitrile as modifier in CO2 was established to achieve a stable and uninterrupted operation with reduced mobile phase viscosity and system pressure drop. More than 230 g of the racemic penultimate was chirally resolved to reach >99% chiral purity, ready for final tert-butyl ester deprotection to provide the API. There were a significant number of impurities in BMS-962212 generated from the final step that needed to be removed. In contrast to conventional SFC conditions, an SFC method exploiting water and ammonia as additives in both the mobile phase and sample solution was developed to accomplish purification and desalting (i.e. removing TFA) of the zwitterionic API in one step. Water as an additive eliminated salt precipitation and improved the resolution while ammonia contributed to the desalting, details of which will be discussed in this article. A throughput of 2 g/h was achieved, and >80 g of the crude API was purified. The same strategy was applied to another Factor XIa API (compound A) and its penultimate.