Home>>Signaling Pathways>> Metabolism>> phosphatases>>DT-061

DT-061 Sale

目录号 : GC34562

DT-061 (SMAP) is a bioavailable PP2A activator. It decreases cell viability in HCC827 and HCC3255 cell lines, with IC50 values of 14.3 μM and 12.4 μM respectively.

DT-061 Chemical Structure

Cas No.:1809427-19-7

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥2,806.00
现货
1mg
¥930.00
现货
5mg
¥2,450.00
现货
10mg
¥3,850.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

DT-061 (SMAP) is a bioavailable PP2A activator. It decreases cell viability in HCC827 and HCC3255 cell lines, with IC50 values of 14.3 μM and 12.4 μM respectively.

PP2A reactivation using single agent SMAP DT-061 is a well-tolerated and orally bioavailable therapeutic strategy that is as efficacious as a combination of kinase inhibitors in antagonizing EGFR-driven TKI-resistant LUAD models. Furthermore, treatment with SMAP can overcome resistance in those models, with an even greater effect when combined with afatinib[1].

[1] Rita Tohmé, et al. JCI Insight. 2019, 4(4): e125693.

Chemical Properties

Cas No. 1809427-19-7 SDF
Canonical SMILES O=S(C1=CC=C(OC(F)(F)F)C=C1)(N[C@H]2[C@H](O)[C@@H](N3C4=C(C=CC=C4)OC5=CC=CC=C35)CCC2)=O
分子式 C25H23F3N2O5S 分子量 520.52
溶解度 DMSO : 125 mg/mL (240.14 mM);Water : < 0.1 mg/mL (insoluble) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.9212 mL 9.6058 mL 19.2116 mL
5 mM 0.3842 mL 1.9212 mL 3.8423 mL
10 mM 0.1921 mL 0.9606 mL 1.9212 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Selective PP2A Enhancement through Biased Heterotrimer Stabilization

Cell 2020 Apr 30;181(3):688-701.e16.PMID:32315618DOI:10.1016/j.cell.2020.03.038.

Impairment of protein phosphatases, including the family of serine/threonine phosphatases designated PP2A, is essential for the pathogenesis of many diseases, including cancer. The ability of PP2A to dephosphorylate hundreds of proteins is regulated by over 40 specificity-determining regulatory "B" subunits that compete for assembly and activation of heterogeneous PP2A heterotrimers. Here, we reveal how a small molecule, DT-061, specifically stabilizes the B56α-PP2A holoenzyme in a fully assembled, active state to dephosphorylate selective substrates, such as its well-known oncogenic target, c-Myc. Our 3.6 Å structure identifies molecular interactions between DT-061 and all three PP2A subunits that prevent dissociation of the active enzyme and highlight inherent mechanisms of PP2A complex assembly. Thus, our findings provide fundamental insights into PP2A complex assembly and regulation, identify a unique interfacial stabilizing mode of action for therapeutic targeting, and aid in the development of phosphatase-based therapeutics tailored against disease specific phospho-protein targets.

Chemogenetic profiling reveals PP2A-independent cytotoxicity of proposed PP2A activators iHAP1 and DT-061

EMBO J 2022 Jul 18;41(14):e110611.PMID:35695070DOI:10.15252/embj.2022110611.

Protein phosphatase 2A (PP2A) is an abundant phosphoprotein phosphatase that acts as a tumor suppressor. For this reason, compounds able to activate PP2A are attractive anticancer agents. The compounds iHAP1 and DT-061 have recently been reported to selectively stabilize specific PP2A-B56 complexes to mediate cell killing. We were unable to detect direct effects of iHAP1 and DT-061 on PP2A-B56 activity in biochemical assays and composition of holoenzymes. Therefore, we undertook genome-wide CRISPR-Cas9 synthetic lethality screens to uncover biological pathways affected by these compounds. We found that knockout of mitotic regulators is synthetic lethal with iHAP1 while knockout of endoplasmic reticulum (ER) and Golgi components is synthetic lethal with DT-061. Indeed we showed that iHAP1 directly blocks microtubule assembly both in vitro and in vivo and thus acts as a microtubule poison. In contrast, DT-061 disrupts both the Golgi apparatus and the ER and lipid synthesis associated with these structures. Our work provides insight into the biological pathways perturbed by iHAP1 and DT-061 causing cellular toxicity and argues that these compounds cannot be used for dissecting PP2A-B56 biology.

PP2A inhibition is a druggable MEK inhibitor resistance mechanism in KRAS-mutant lung cancer cells

Sci Transl Med 2018 Jul 18;10(450):eaaq1093.PMID:30021885DOI:10.1126/scitranslmed.aaq1093.

Kinase inhibitor resistance constitutes a major unresolved clinical challenge in cancer. Furthermore, the role of serine/threonine phosphatase deregulation as a potential cause for resistance to kinase inhibitors has not been thoroughly addressed. We characterize protein phosphatase 2A (PP2A) activity as a global determinant of KRAS-mutant lung cancer cell resistance across a library of >200 kinase inhibitors. The results show that PP2A activity modulation alters cancer cell sensitivities to a large number of kinase inhibitors. Specifically, PP2A inhibition ablated mitogen-activated protein kinase kinase (MEK) inhibitor response through the collateral activation of AKT/mammalian target of rapamycin (mTOR) signaling. Combination of mTOR and MEK inhibitors induced cytotoxicity in PP2A-inhibited cells, but even this drug combination could not abrogate MYC up-regulation in PP2A-inhibited cells. Treatment with an orally bioavailable small-molecule activator of PP2A DT-061, in combination with the MEK inhibitor AZD6244, resulted in suppression of both p-AKT and MYC, as well as tumor regression in two KRAS-driven lung cancer mouse models. DT-061 therapy also abrogated MYC-driven tumorigenesis. These data demonstrate that PP2A deregulation drives MEK inhibitor resistance in KRAS-mutant cells. These results emphasize the need for better understanding of phosphatases as key modulators of cancer therapy responses.

PP2A-activating Drugs Enhance FLT3 Inhibitor Efficacy through AKT Inhibition-Dependent GSK-3β-Mediated c-Myc and Pim-1 Proteasomal Degradation

Mol Cancer Ther 2021 Apr;20(4):676-690.PMID:33568357DOI:10.1158/1535-7163.MCT-20-0663.

Fms-like tyrosine-like kinase 3 internal tandem duplication (FLT3-ITD) is present in acute myeloid leukemia (AML) in 30% of patients and is associated with short disease-free survival. FLT3 inhibitor efficacy is limited and transient but may be enhanced by multitargeting of FLT3-ITD signaling pathways. FLT3-ITD drives both STAT5-dependent transcription of oncogenic Pim-1 kinase and inactivation of the tumor-suppressor protein phosphatase 2A (PP2A), and FLT3-ITD, Pim-1, and PP2A all regulate the c-Myc oncogene. We studied mechanisms of action of cotreatment of FLT3-ITD-expressing cells with FLT3 inhibitors and PP2A-activating drugs (PADs), which are in development. PADs, including FTY720 and DT-061, enhanced FLT3 inhibitor growth suppression and apoptosis induction in FLT3-ITD-expressing cell lines and primary AML cells in vitro and MV4-11 growth suppression in vivo PAD and FLT3 inhibitor cotreatment independently downregulated c-Myc and Pim-1 protein through enhanced proteasomal degradation. c-Myc and Pim-1 downregulation was preceded by AKT inactivation, did not occur in cells expressing myristoylated (constitutively active) AKT1, and could be induced by AKT inhibition. AKT inactivation resulted in activation of GSK-3β, and GSK-3β inhibition blocked downregulation of both c-Myc and Pim-1 by PAD and FLT3 inhibitor cotreatment. GSK-3β activation increased c-Myc proteasomal degradation through c-Myc phosphorylation on T58; infection with c-Myc with T58A substitution, preventing phosphorylation, blocked downregulation of c-Myc by PAD and FLT3 inhibitor cotreatment. GSK-3β also phosphorylated Pim-1L/Pim-1S on S95/S4. Thus, PADs enhance efficacy of FLT3 inhibitors in FLT3-ITD-expressing cells through a novel mechanism involving AKT inhibition-dependent GSK-3β-mediated increased c-Myc and Pim-1 proteasomal degradation.

Select Stabilization of a Tumor-Suppressive PP2A Heterotrimer

Trends Pharmacol Sci 2020 Sep;41(9):595-597.PMID:32624198DOI:10.1016/j.tips.2020.06.008.

In cancer, suppression of protein phosphatases, such as protein phosphatase 2A (PP2A), that normally counteract kinases, contributes to aberrant signaling. Leonard et al. recently demonstrated that a novel small-molecule activator of PP2A, DT-061, selectively stabilizes a specific PP2A holoenzyme responsible for dephosphorylating critical oncogenic targets, including MYC. The 3.6-Å cryo-electron microscopy map of the heterotrimer assembly provides insight into the druggable structure of PP2A, guiding future phosphatase therapeutics.