Home>>Signaling Pathways>> Apoptosis>> Other Apoptosis>>DIM-C-pPhOH

DIM-C-pPhOH Sale

(Synonyms: 4(二(1H-吲哚-3-基)甲基)苯酚) 目录号 : GC38772

A Nur77 antagonist

DIM-C-pPhOH Chemical Structure

Cas No.:151358-47-3

规格 价格 库存 购买数量
1mg
¥450.00
现货
5mg
¥675.00
现货
10mg
¥855.00
现货
25mg
¥1,710.00
现货
50mg
¥2,610.00
现货
100mg
¥4,410.00
现货
200mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

C-DIM8 is a para-phenyl-substituted diindolylmethane (C-DIM) and an antagonist of the orphan receptor nuclear receptor-related protein 77 (Nur77).1 It inhibits reporter gene expression induced by the Nur77 agonist C-DIM5 in PANC-28 cells when used at a concentration of 20 ?M. C-DIM8 (10, 15, and 20 ?M) reduces expression of BIRC5, the gene encoding survivin, in PANC-1 pancreatic cancer cells.2 In vivo, C-DIM8 (30 mg/kg) induces tumor cell apoptosis and reduces tumor volume in an L3.6pl pancreatic carcinoma mouse xenograft model.

1.Chintharlapalli, S., Burghardt, R., Papineni, S., et al.Activation of Nur77 by selected 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes induces apoptosis through nuclear pathwaysJ. Biol. Chem.280(26)24903-24914(2005) 2.Lee, S.-O., Abdelrahim, M., Yoon, K., et al.Inactivation of the orphan nuclear receptor TR3/Nur77 inhibits pancreatic cancer cell and tumor growthCancer Res.70(17)6824-6836(2010)

Chemical Properties

Cas No. 151358-47-3 SDF
别名 4(二(1H-吲哚-3-基)甲基)苯酚
Canonical SMILES OC1=CC=C(C(C2=CNC3=C2C=CC=C3)C4=CNC5=C4C=CC=C5)C=C1
分子式 C23H18N2O 分子量 338.4
溶解度 DMSO: 250 mg/mL (738.77 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.9551 mL 14.7754 mL 29.5508 mL
5 mM 0.591 mL 2.9551 mL 5.9102 mL
10 mM 0.2955 mL 1.4775 mL 2.9551 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Potent inhibition of breast cancer by bis-indole-derived nuclear receptor 4A1 (NR4A1) antagonists

Breast Cancer Res Treat 2019 Aug;177(1):29-40.PMID:31119568DOI:10.1007/s10549-019-05279-9.

Background: Nuclear receptor 4A1 (NR4A1) is overexpressed in mammary tumors, and the methylene-substituted bis-indole derivative 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) acts as an NR4A1 antagonist (inverse agonist) and inhibits NR4A1-regulated pro-oncogenic pathways/genes in breast and other cancer cells. Methods: Buttressed analogs of DIM-C-pPhOH were synthesized by condensation of the substituted p-hydroxybenzaldehydes with indole. Breast cancer cell growth, survival, and migration assays were carried out by cell counting, Annexin V staining, and Boyden chamber assays, respectively. Changes in RNA and protein expression were determined by RT-PCR and western blots, respectively. Analysis of RNAseq results was carried out using Ingenuity Pathway Analysis, and in vivo potencies of NR4A1 antagonists were determined in athymic nude mice bearing MDA-MB-231 cells in an orthotopic model. Results: Ingenuity Pathway analysis of common genes modulated by NR4A1 knockdown or treatment with DIM-C-pPhOH showed that changes in gene expression were consistent with the observed decreased functional responses, namely inhibition of growth and migration and increased apoptosis. DIM-C-pPhOH is rapidly metabolized and the effects and potencies of buttressed analogs of DIM-C-pPhOH which contain one or two substituents ortho to the hydroxyl groups were investigated using NR4A1-regulated gene/gene products as endpoints. The buttressed analogs were more potent than DIM-C-pPhOH in both in vitro assays and as inhibitors of mammary tumor growth. Moreover, using 1,1-bis(3'-indolyl)-1-(3-chloro-4-hydroxy-5-methoxyphenyl)methane (DIM-C-pPhOh-3-Cl-5-OCH3) significant tumor growth inhibition was observed at doses as low as 2 mg/kg/d which was at least an order of magnitude more potent than DIM-C-pPhOH. Conclusions: These buttressed analogs represent a more potent set of second generation NR4A1 antagonists as inhibitors of breast cancer.

Diindolylmethane analogs bind NR4A1 and are NR4A1 antagonists in colon cancer cells

Mol Endocrinol 2014 Oct;28(10):1729-39.PMID:25099012DOI:10.1210/me.2014-1102.

1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methane (C-DIM) compounds exhibit antineoplastic activity in multiple cancer cell lines and the p-hydroxyphenyl analog (DIM-C-pPhOH) inactivates nuclear receptor 4A1 (NR4A1) in lung and pancreatic cancer cell lines. Using a series of 14 different p-substituted phenyl C-DIMs, we show that several compounds including DIM-C-pPhOH directly interacted with the ligand binding domain of NR4A1. Computational-based molecular modeling studies showed high-affinity interactions of DIM-C-pPhOH and related compounds within the ligand binding pocket of NR4A1, and these same compounds decreased NR4A1-dependent transactivation in colon cancer cells transfected with a construct containing 3 tandem Nur77 binding response elements linked to a luciferase reporter gene. Moreover, we also show that knockdown of NR4A1 by RNA interference (small interfering NR4A1) or treatment with DIM-C-pPhOH and related compounds decreased colon cancer cell growth, induced apoptosis, decreased expression of survivin and other Sp-regulated genes, and inhibited mammalian target of rapamycin signaling. Thus, C-DIMs such as DIM-C-pPhOH directly bind NR4A1 and are NR4A1 antagonists in colon cancer cells, and their antineoplastic activity is due, in part, to their interactions with nuclear NR4A1.

Bis-Indole-Derived Nuclear Receptor 4A1 (NR4A1, Nur77) Ligands as Inhibitors of Endometriosis

Endocrinology 2020 Apr 1;161(4):bqaa027.PMID:32099996DOI:10.1210/endocr/bqaa027.

Endometriosis is an inflammatory disease that primarily affects women during their reproductive years, and since current hormonal therapies are of concern, new hormone-independent treatment regimens are needed. The orphan nuclear receptor 4A1 (NR4A1, Nur77) is expressed in patient-derived (stromal) endometriotic cells and also epithelial cell lines, and we observed that knockdown of NR4A1 in patient-derived ectopic endometrium-isolated ovarian endometrioma (ESECT)-7 and ESECT-40 cells decreased cell proliferation and induced apoptosis. Moreover, the treatment of these cells with bis-indole derived NR4A1 ligands 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) and its buttressed 3-chloro-5-methoxy analog (DIM-C-pPhOH-3-Cl-5-OCH3) inhibited cell growth and induced apoptosis and related genes. The compounds exhibit NR4A1 antagonist activities in both functional and transactivation assays whereas these effects were not observed in normal endometrial cells. We also observed that NR4A1 knockdown and treatment with NR4A1 antagonists decreased fibrosis, α-smooth muscle actin, and related pro-fibrotic genes in ESECT-7 and ESECT-40 cells, and similar results were observed in epithelial-derived endometriotic cell lines. Moreover, in an endometriosis mouse model with auto-transplantation and also in severe combined immune deficiency mice transplanted with human endometriotic cells treatment with 25 mg/kg/day DIM-C-pPhOH-3-Cl-5-OCH3 significantly inhibited growth and expansion of endometriotic lesions. Thus, bis-indole-derived NR4A1 ligands represent a novel class of drugs as nonhormonal therapy for endometriosis.

Nuclear receptor 4A1 (NR4A1) as a drug target for treating rhabdomyosarcoma (RMS)

Oncotarget 2016 May 24;7(21):31257-69.PMID:27144436DOI:10.18632/oncotarget.9112.

The orphan nuclear receptor NR4A1 is expressed in tumors from rhabdomyosarcoma (RMS) patients and Rh30 and RD RMS cell lines, and we used RNA interference (RNAi) to investigate the role of this receptor in RMS cells. Knockdown of NR4A1 in Rh30 cells decreased cell proliferation, induced Annexin V staining and induced polyADPribose polymerase (PARP) cleavage and these results were similar to those observed in other solid tumors. Previous studies show that NR4A1 regulates expression of growth promoting/pro-survival genes with GC-rich promoters, activates mTOR through suppression of p53, and maintains low oxidative stress by regulating expression of isocitrate dehydrogenase 1 (IDH1) and thioredoxin domain containing 5 (TXNDC5). Results of RNAi studies demonstrated that NR4A1 also regulates these pathways and associated genes in RMS cells and thereby exhibits pro-oncogenic activity. 1,1-Bis(3-indolyl)-1-(p-substituted phenyl)methane (C-DIM) analogs containing p-hydroxyl (DIM-C-pPhOH) and p-carboxymethyl (DIM-C-pPhCO2Me) substituents are NR4A1 ligands that decreased NR4A1-dependent transactivation in RMS cells and inhibited RMS cell and tumor growth and induced apoptosis. Moreover, the effects of NR4A1 knockdown and the C-DIM/NR4A1 antagonists were comparable as inhibitors of NR4A1-dependent genes/pathways. Both NR4A1 knockdown and treatment with DIM-C-pPhOH and DIM-C-pPhCO2Me also induced ROS which activated stress genes and induced sestrin 2 which activated AMPK and inhibited mTOR in the mutant p53 RMS cells. Since NR4A1 regulates several growth-promoting/pro-survival pathways in RMS, the C-DIM/NR4A1 antagonists represent a novel mechanism-based approach for treating this disease alone or in combination and thereby reducing the adverse effects of current cytotoxic therapies.

Bis-Indole-Derived NR4A1 Ligands and Metformin Exhibit NR4A1-Dependent Glucose Metabolism and Uptake in C2C12 Cells

Endocrinology 2018 May 1;159(5):1950-1963.PMID:29635345DOI:10.1210/en.2017-03049.

Treatment of C2C12 muscle cells with metformin or the NR4A1 ligand 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) induced NR4A1 and Glut4 messenger RNA and protein expression. Similar results were observed with buttressed (3- or 3,5-substituted) analogs of DIM-C-pPhOH, including 1,1-bis(3'-indolyl)-1-(3-chloro-4-hydroxy-5-methoxyphenyl)methane (DIM-C-pPhOH-3-Cl-5-OCH3), and the buttressed analogs were more potent than DIM-C-pPhOH NR4A1 agonists. Metformin and the bis-indole substituted analogs also induced expression of several glycolytic genes and Rab4, which has previously been linked to enhancing cell membrane accumulation of Glut4 and overall glucose uptake in C2C12 cells, and these responses were also observed after treatment with metformin and the NR4A1 ligands. The role of NR4A1 in mediating the responses induced by the bis-indoles and metformin was determined by knockdown of NR4A1, and this resulted in attenuating the gene and protein expression and enhanced glucose uptake responses induced by these compounds. Our results demonstrate that the bis-indole-derived NR4A1 ligands represent a class of drugs that enhance glucose uptake in C2C12 muscle cells, and we also show that the effects of metformin in this cell line are NR4A1-dependent.