Home>>Decanoyl-L-carnitine

Decanoyl-L-carnitine

(Synonyms: (–)-Decanoylcarnitine, C10 Carnitine) 目录号 : GC40025

癸酰-L-肉碱对 [1-14C]-22:4 (n-6) 和 [1-14C]-22:5 (n-3) 的去饱和脂肪酸代谢物的形成具有刺激作用 .

Decanoyl-L-carnitine Chemical Structure

Cas No.:3992-45-8

规格 价格 库存 购买数量
5mg
¥261.00
现货
10mg
¥495.00
现货
25mg
¥891.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Decanoyl-L-carnitine is an ester derivative of L-carnitine . It increases the formation of C24 fatty acid intermediates, as well as docosapentaenoic and docosahexaenoic acid in rat hepatocytes.[1]

Reference:
[1]. Tran, T.N., Retterstøl, K., and Christophersen, B.O. Differences in the conversion of the polyunsaturated fatty acids [1-14C]22:4(n-6) and [1-14C]22:5(n-3) to [14C]22:5(n-6) and [14C]22:6(n-3) in isolated rat hepatocytes. Biochim Biophys. Acta. 1532(1-2), 137-147 (2001).

Chemical Properties

Cas No. 3992-45-8 SDF
别名 (–)-Decanoylcarnitine, C10 Carnitine
化学名 (2R)-3-carboxy-N,N,N-trimethyl-2-[(1-oxodecyl)oxy]-1-propanaminium, inner salt, hydrate
Canonical SMILES [O-]C(C[C@H](C[N+](C)(C)C)OC(CCCCCCCCC)=O)=O
分子式 C17H33NO4 分子量 315.5
溶解度 Soluble in water 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.1696 mL 15.8479 mL 31.6957 mL
5 mM 0.6339 mL 3.1696 mL 6.3391 mL
10 mM 0.317 mL 1.5848 mL 3.1696 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

High serum levels of L-carnitine and citric acid negatively correlated with alkaline phosphatase are detectable in Koreans before gastric cancer onset

Metabolomics 2022 Jul 28;18(8):62.PMID:35900644DOI:10.1007/s11306-022-01922-7.

Introduction: Monitoring metabolic biomarkers could be utilized as an effective tool for the early detection of gastric cancer (GC) risk. Objective: We aimed to discover predictive serum biomarkers for GC and investigate biomarker-related metabolism. Methods: Subjects were randomly selected from the Korean Cancer Prevention Study-II cohort and matched by age and sex. We analyzed baseline serum samples of 160 subjects (discovery set; control and GC occurrence group, 80 each) via nontargeted screening. Identified putative biomarkers were validated in baseline serum samples of 140 subjects (validation set; control and GC occurrence group, 70 each) using targeted metabolites analysis. Results: The final analysis was conducted on the discovery set (control, n = 52 vs. GC occurrence, n = 50) and the validation set (control, n = 43 vs. GC occurrence, n = 44) applying exclusion conditions. Eighteen putative metabolite sets differed between two groups found on nontargeted metabolic screening. We focused on fatty acid-related energy metabolism. In targeted analysis, levels of Decanoyl-L-carnitine (p = 0.019), L-carnitine (p = 0.033), and citric acid (p = 0.025) were significantly lower in the GC occurrence group, even after adjusting for age, sex, and smoking status. Additionally, L-carnitine and citric acid were confirmed to have an independently significant relationship to GC development. Notably, alkaline phosphatase showed a significant correlation with these two biomarkers. Conclusion: Changes in serum L-carnitine and citric acid levels that may result from alterations of fatty-acid-related energy metabolism are expected to be valuable biomarkers for the early diagnosis of GC risk.

Specific Metabolites Involved in Antioxidation and Mitochondrial Function Are Correlated With Frailty in Elderly Men

Front Med (Lausanne) 2022 Jan 28;9:816045.PMID:35155500DOI:10.3389/fmed.2022.816045.

Background: As an age-related syndrome, frailty may play a central role in poor health among older adults. Sarcopenia overlaps with the physical domain of frailty, and most existing studies have analyzed the associated factors of frailty and sarcopenia as an isolated state. Perturbations in metabolism may play an important role in the presence of frailty or sarcopenia; however, the metabolites associated with frailty, especially overlapping with sarcopenia remain unclear. In this study, we aimed to explore whether amino acids, carnitines, acylcarnitines and lysophosphatidylcholines, as specific panels, are significantly correlated with frailty, especially overlapping with sarcopenia, to gain insight into potential biomarkers and possible biological mechanisms and to facilitate their management. Methods: We applied a targeted high-performance liquid chromatography-tandem mass spectrometry approach in serum samples from 246 Chinese older men (age 79.2 ± 7.8 years) with frailty (n = 150), non-frailty (n = 96), frailty and sarcopenia (n = 52), non-frail and non-sarcopenic control (n = 85). Frailty was evaluated using Freid phenotype criteria, sarcopenia was defined by diagnostic algorithm of Asian Working Group on Sarcopenia, and the participants were diagnosed as frailty and sarcopenia when they met the evaluation criteria of both frailty and sarcopenia. A panel of 29 metabolomic profiles was assayed and included different classes of amino acids, carnitines, acylcarnitines, and lysophosphatidylcholines (LPCs). Multivariate logistic regression was used to screen the metabolic factors contributing to frailty status, and orthogonal partial least squares discriminant analysis was used to explore important factors and distinguish different groups. Results: In older men demonstrating the frail phenotype, amino acid perturbations included lower tryptophan and higher glycine levels. With regard to lipid metabolism, the frailty phenotype was characterized by lower concentrations of isovalerylcarnitine (C5), LPC16:0 and LPC18:2, while higher levels of octanoyl-L-carnitine (C8), Decanoyl-L-carnitine (C10), dodecanoyl-L-carnitine (C12) and tetradecanoyl-L-carnitine (C14). After adjusting for several clinical confounders, tryptophan, LPC18:2, LPC 16:0 and C5 were negatively correlated with frailty, and C8 and C12 were positively related to frailty. We preliminarily identified metabolic profiles (LPC16:0, LPC18:2, glycine and tryptophan) that may distinguish older men with frailty from those without frailty. Importantly, a set of serum amino acids and LPCs (LPC16:0, LPC18:2, and tryptophan) was characterized in the metabotype of older adults with an overlap of frailty and sarcopenia. The metabolites that were most discriminating of frailty status implied that the underlying mechanism might be involved in antioxidation and mitochondrial dysfunction. Conclusions: These present metabolic analyses may provide valuable information on the potential biomarkers and possible biological mechanisms of frailty, and overlapping sarcopenia. The findings obtained may offer insight into their management in older adults.

Specific lysophosphatidylcholine and acylcarnitine related to sarcopenia and its components in older men

BMC Geriatr 2022 Mar 25;22(1):249.PMID:35337292DOI:10.1186/s12877-022-02953-4.

Background: Metabolic profiling may provide insights into the pathogenesis and identification of sarcopenia; however, data on the metabolic basis of sarcopenia and muscle-related parameters among older adults remain incompletely understood. This study aimed to identify the associations of metabolites with sarcopenia and its components, and to explore metabolic perturbations in older men, who have a higher prevalence of sarcopenia than women. Methods: We simultaneously measured the concentrations of amino acids, carnitine, acylcarnitines, and lysophosphatidylcholines (LPCs) in serum samples from a cross-sectional study of 246 Chinese older men, using targeted metabolomics. Sarcopenia and its components, including skeletal muscle index (SMI), 6-m gait speed, and handgrip strength were assessed according to the algorithm of the Asian Working Group for Sarcopenia criteria. Associations were determined by univariate and multivariate analyses. Results: Sixty-five (26.4%) older men with sarcopenia and 181 (73.6%) without sarcopenia were included in the study. The level of isovalerylcarnitine (C5) was associated with the presence of sarcopenia and SMI. Regarding the overlapped metabolites for muscle parameters, among ten metabolites associated with muscle mass, six metabolites including leucine, octanoyl-L-carnitine (C8), Decanoyl-L-carnitine (C10), dodecanoyl-L-carnitine (C12) and tetradecanoyl-L-carnitine (C14), and LPC18:2 were associated with handgrip strength, and three of which (C12, C14, and LPC18:2) were also associated with gait speed. Specifically, tryptophan was positively associated and glycine was negatively associated with handgrip strength, while glutamate was positively correlated with gait speed. Isoleucine, branched chain amino acids, and LPC16:0 were positively associated with SMI. Moreover, the levels of LPC 16:0,18:2 and 18:0 contributed significantly to the model discriminating between older men with and without sarcopenia, whereas there were no significant associations for other amino acids, acylcarnitines, and LPC lipids. Conclusions: These results showed that specific and overlapped metabolites are associated with sarcopenic parameters in older men. This study highlights the potential roles of acylcarnitines and LPCs in sarcopenia and its components, which may provide valuable information regarding the pathogenesis and management of sarcopenia.

Exogenous carnitine application augments transport of fatty acids into mitochondria and stimulates mitochondrial respiration in maize seedlings grown under normal and cold conditions

Cryobiology 2019 Dec;91:97-103.PMID:31589831DOI:10.1016/j.cryobiol.2019.10.003.

This study aimed to investigate whether exogenous application of carnitine stimulates transportation of fatty acids into mitochondria, which is an important part of fatty acid trafficking in cells, and mitochondrial respiration in the leaves of maize seedlings grown under normal and cold conditions. Cold stress led to significant increases in lipase activity, which is responsible for the breakdown of triacylglycerols, and carnitine acyltransferase (carnitine acyltransferase I and II) activities, which are responsible for the transport of activated long-chain fatty acids into mitochondria. While exogenous application of carnitine has a similar promoting effect with cold stress on lipase activity, it resulted in further increases in the activity of carnitine acyltransferases compared to cold stress. The highest activity levels for these enzymes were recorded in the seedlings treated with cold plus carnitine. In addition, these increases were correlated with positive increases in the contents of free- and long-chain acylcarnitines (Decanoyl-L-carnitine, lauroyl-l-carnitine, myristoyl-l-carnitine, and stearoyl-l-carnitine), and with decreases in the total lipid content. The highest values for free- and long-chain acylcarnitines and the lowest value for total lipid content were recorded in the seedlings treated with cold plus carnitine. On the other hand, carnitine with and without cold stress significantly upregulated the expression level of citrate synthase, which is responsible for catalysing the first reaction of the citric acid cycle, and cytochrome oxidase, which is the membrane-bound terminal enzyme in the electron transfer chain, as well as lipase. All these results revealed that on the one hand, carnitine enhanced transport of fatty acids into mitochondria by increasing the activities of lipase and carnitine acyltransferases, and, on the other hand, stimulated mitochondrial respiration in the leaves of maize seedlings grown under normal and cold conditions.

Serum and urine metabolomics analyses reveal metabolic pathways and biomarkers in relation to nasopharyngeal carcinoma

Rapid Commun Mass Spectrom 2023 Mar 30;37(6):e9469.PMID:36593223DOI:10.1002/rcm.9469.

Rationale: Nasopharyngeal carcinoma (NPC) is a malignant tumor that is endemic in Southeast Asia, North Africa, and southern China. There is an urgent need for effective early diagnosis and treatment of this disease since NPC is currently often detected at advanced stages. Methods: To reveal the underlying metabolic mechanisms and discover potential diagnostic biomarkers of NPC, we employed ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and UHPLC-Q-Exactive Orbitrap MS, respectively, to analyze 54 serum samples and 54 urine samples from 27 patients with NPC and 27 healthy control individuals. Results: A total of 1230 metabolites were determined in serum samples, and 181 of the 1230 metabolites were significantly changed in NPC patients. The 181 metabolites were enriched in 16 pathways, including biosynthesis of unsaturated fatty acids, cholesterol metabolism, and ferroptosis. A total of 2509 metabolites were detected in the urine samples. Among them, 179 metabolites were significantly altered in NPC patients, and these metabolites were enriched in eight pathways, including the tricarboxylic acid (TCA) cycle and caffeine metabolism. Seven metabolites, including creatinine and paraxanthine, were found to be significantly changed in both NPC serum and urine samples. Based on them, further biomarker analysis revealed that the panel of three serum metabolites, octanoylcarnitine, creatinine, and Decanoyl-L-carnitine, displayed a perfect diagnostic performance (area under the curve [AUC] = 0.973) to distinguish NPC patients from controls, while the other three-metabolite biomarker panel, consisting of stachydrine, Decanoyl-L-carnitine, and paraxanthine, had an AUC = 0.809 to distinguish NPC and control in urine samples. Conclusion: This work highlights the key metabolites and metabolic pathways disturbed in NPC and presents potential biomarkers for effective diagnosis of this disease.