Cyclo (-RGDfK)
(Synonyms: Cyclo(-Arg-Gly-Asp-D-Phe-Lys)) 目录号 : GC17610
Cyclo (-RGDfK) 是一种高效且特异性较高的 αvβ3 整合素抑制剂,其半抑制浓度(IC₅₀)仅为 0.94nM,能够精准靶向肿瘤细胞表面的 αvβ3 整合素。
Cas No.:161552-03-0
Sample solution is provided at 25 µL, 10mM.
Cyclo (-RGDfK) is a highly efficient and highly specific αvβ3 integrin inhibitor, with an IC₅₀ of only 0.94nM. Cyclo(-RGDfK) can precisely target the αvβ3 integrin on the surface of tumor cells[1]. Thereby Cyclo(-RGDfK) is therefore widely used in studies targeting tumor neovasculature and cancer cells [2]. Cyclo(-RGDfK) can inhibit cancer cell proliferation and migration[3]. Moreover, Cyclo(-RGDfK) is frequently employed as a core ligand for constructing αvβ3-targeted imaging probes or drug delivery systems in tumor imaging studies[4].
In vitro, pretreatment of HepG2 and A549 cells with Cyclo(-RGDfK) (1–10μM) for 4–6h significantly enhanced cellular uptake of the cRGD-PEG-g-(PBYP-ss-CPT) nanoprodrug; compared to the non-cRGD control group, intracellular drug accumulation increased and cell viability was significantly reduced[5]. Pretreatment of A7R5 cells with Cyclo(-RGDfK) (20nM) for 1h followed by 12h stimulation with FPA (10⁻²μM) significantly inhibited cell migration and proliferation, downregulated integrin αVβ3/PI3K/AKT pathway-related protein expression, and reduced Cyclin D1 and PCNA levels[6].
In vivo, intranasal administration of Cyclo(-RGDfK) (2.0μg) 1h prior to modeling significantly inhibited integrin αVβ3/MAPKs/MMP-9 pathway activation, alleviated blood–brain barrier disruption, and improved neurological deficits in a rat model of subarachnoid hemorrhage (SAH)[7]. Cyclo(-RGDfK)-conjugated gold nanoshells (400mg/kg) were injected intravenously into HCT116 colon cancer-bearing nude mice; 24h later, near-infrared laser thermotherapy (47°C × 10min) significantly enhanced tumor vascular-targeted thermal ablation, resulting in more extensive necrosis and vascular disruption[8].
References:
[1] Simeček J, Notni J, Kapp TG, et al. Benefits of NOPO as chelator in gallium-68 peptides, exemplified by preclinical characterization of (68)Ga-NOPO-c(RGDfK). Mol Pharm. 2014 May 5;11(5):1687-95.
[2] Jin ZH, Furukawa T, Degardin M, et al. αVβ3 Integrin-Targeted Radionuclide Therapy with 64Cu-cyclam-RAFT-c(-RGDfK-)4. Mol Cancer Ther. 2016 Sep;15(9):2076-85.
[3] Kalaydina RV, Zhou H, Markvicheva E, et al. Impact of Fucosylation on Self-Assembly of Prostate and Breast Tumor Spheroids by Using Cyclo-RGDfK(TPP) Peptide and Image Object Detection. Onco Targets Ther. 2019 Dec 17;12:11153-11173.
[4] Yoshimoto M, Hayakawa T, Mutoh M, et al. In vivo SPECT imaging with 111In-DOTA-c(RGDfK) to detect early pancreatic cancer in a hamster pancreatic carcinogenesis model. J Nucl Med. 2012 May;53(5):765-71.
[5] Zhou R, Zhang M, He J, et al. Functional cRGD-Conjugated Polymer Prodrug for Targeted Drug Delivery to Liver Cancer Cells. ACS Omega. 2022 Jun 7;7(24):21325-21336.
[6] Fang R, Yang Q, Wu D, et al. Fibrinopeptide a promotes the proliferation and migration of vascular smooth muscle cells by regulating the integrin αVβ3/PI3K/AKT signaling pathway. Mol Biol Rep. 2025 Feb 5;52(1):205.
[7] Okada T, Suzuki H, Travis ZD, et al. SPARC Aggravates Blood-Brain Barrier Disruption via Integrin αVβ3/MAPKs/MMP-9 Signaling Pathway after Subarachnoid Hemorrhage. Oxid Med Cell Longev. 2021 Nov 11;2021:9739977.
[8] Xie H, Diagaradjane P, Deorukhkar AA, et al. Integrin αvβ3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy. Int J Nanomedicine. 2011;6:259-69.
Cyclo (-RGDfK) 是一种高效且特异性较高的 αvβ3 整合素抑制剂,其半抑制浓度(IC₅₀)仅为 0.94nM,能够精准靶向肿瘤细胞表面的 αvβ3 整合素[1]。因此常被用于肿瘤微血管及癌细胞的靶向治疗的研究中[2]。Cyclo(-RGDfK)可抑制癌细胞的增殖和迁移能力[3]。此外,Cyclo(-RGDfK)还常被用作构建αvβ3靶向示踪剂或药物递送系统的核心配体,用于肿瘤显像研究[4]。
在体外,Cyclo(-RGDfK)(1–10μM)预处理HepG2及A549细胞4–6h,可显著增强细胞对cRGD-PEG-g-(PBYP-ss-CPT)纳米前药的摄取;与无cRGD对照组相比,胞内药物蓄积量增加,并显著降低细胞存活率[5]。Cyclo(-RGDfK)(20nM)预处理A7R5 1h,随后以FPA(10⁻²μM)刺激12h,显著抑制细胞迁移和增殖,并下调integrin αVβ3/PI3K/AKT通路相关蛋白表达,降低Cyclin D1与PCNA水平[6]。
在体内,Cyclo(-RGDfK)(2.0μg)经鼻给药预处理1h,用于治疗蛛网膜下腔出血模型(SAH)大鼠,Cyclo(-RGDfK)显著抑制integrin αVβ3/MAPKs/MMP-9通路激活,减轻血脑屏障破坏及神经功能缺损[7]。400mg/kg的Cyclo(-RGDfK)偶联金纳米壳,经尾静脉注射于HCT116结肠癌裸鼠,24小时后行近红外激光热疗(47℃×10min),可显著增强肿瘤血管靶向热消融效果,诱导更广泛坏死及血管破坏[8]。
Cell experiment [1]: | |
Cell lines | Rat thoracic artery smooth muscle cells (A7R5) |
Preparation Method | A7R5 cells were seeded in 6-well plates at 80% confluence, serum-starved overnight, and then treated with Fibrinopeptide A (FPA, 10⁻²µM) for 12h to establish the pro-atherogenic stimulation model. Cells were divided into three groups: control (serum-free DMEM), FPA group, and Cyclo(-RGDfK) (20nM) pre-treatment followed by FPA group. |
Reaction Conditions | 20nM; 1h pre-incubation at 37 °C followed by 12h FPA (10⁻²µM) exposure |
Applications | Cyclo(-RGDfK) significantly inhibited FPA-induced A7R5 migration and proliferation by blocking integrin αVβ3, thereby down-regulating PI3K/AKT signaling and decreasing Cyclin D1 and PCNA expression. |
Animal experiment [2]: | |
Animal models | Sprague-Dawley rats |
Preparation Method | SAH was induced by endovascular perforation. 1 h before modeling, rats received intranasal administration of 2.0μg cyclo(-RGDfK) dissolved in 4μL PBS; recombinant SPARC (0.3μg) was given intracerebroventricularly 1h after SAH. Neurological scores, brain water content, IgG extravasation, and Western blot analyses were performed 24h post-SAH. |
Dosage form | 2.0μg; IN |
Applications | Cyclo(-RGDfK) significantly ameliorated post-SAH blood–brain barrier disruption and neurological deficits by inhibiting integrin αVβ3/MAPKs/MMP-9 signaling. |
References: |
Cas No. | 161552-03-0 | SDF | |
别名 | Cyclo(-Arg-Gly-Asp-D-Phe-Lys) | ||
化学名 | 2-[(2S,5R,8S,11S)-8-(4-aminobutyl)-5-benzyl-11-[3-(diaminomethylideneamino)propyl]-3,6,9,12,15-pentaoxo-1,4,7,10,13-pentazacyclopentadec-2-yl]acetic acid | ||
Canonical SMILES | C1C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)N1)CCCN=C(N)N)CCCCN)CC2=CC=CC=C2)CC(=O)O | ||
分子式 | C27H41N9O7 | 分子量 | 603.7 |
溶解度 | ≥ 30.185mg/mL in DMSO, ≥ 59.2 mg/mL in Water | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
![]() |
1 mg | 5 mg | 10 mg |
1 mM | 1.6565 mL | 8.2823 mL | 16.5645 mL |
5 mM | 0.3313 mL | 1.6565 mL | 3.3129 mL |
10 mM | 0.1656 mL | 0.8282 mL | 1.6565 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet