Home>>Signaling Pathways>> Cardiovascular>> Atherosclerosis>>Cholesterol-d7

Cholesterol-d7 Sale

(Synonyms: 胆固醇 d7) 目录号 : GC47085

An internal standard for the quantification of cholesterol

Cholesterol-d7 Chemical Structure

Cas No.:83199-47-7

规格 价格 库存 购买数量
1 mg
¥428.00
现货
5 mg
¥1,610.00
现货
10 mg
¥2,141.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Cholesterol-d7 is intended for use as an internal standard for the quantification of cholesterol by GC- or LC-MS. Cholesterol is a major sterol produced in mammalian cells that is required for cell viability and proliferation.1 It is a component of mammalian cell membranes that interacts with membrane phospholipids, sphingolipids, and proteins to influence their behavior. Cholesterol is a precursor of steroid hormones, bile acids, and the active form of vitamin D. Impaired cholesterol homeostasis is related to development of various diseases including fatty liver, diabetes, gallstones, dyslipidemia, atherosclerosis, heart attack, and stroke.2

1.Ohvo-RekilÄ, H., Ramstedt, B., LeppimÄki, P., et al.Cholesterol interactions with phospholipids in membranesProg. Lipid Res.41(1)66-97(2002) 2.Yamanashi, Y., Takada, T., and Suzuki, H.Associations between lifestyle-related diseases and transporters involved in intestinal absorption and biliary excretion of cholesterolBiol. Pharm. Bull.41(1)1-10(2018)

Chemical Properties

Cas No. 83199-47-7 SDF
别名 胆固醇 d7
Canonical SMILES C[C@H](CCCC(C([2H])([2H])[2H])([2H])C([2H])([2H])[2H])[C@@]1([H])CC[C@@]2([H])[C@]3([H])CC=C4C[C@@H](O)CC[C@]4(C)[C@@]3([H])CC[C@@]21C
分子式 C27H39D7O 分子量 393.7
溶解度 Chloroform: Slightly Soluble 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.54 mL 12.7 mL 25.4001 mL
5 mM 0.508 mL 2.54 mL 5.08 mL
10 mM 0.254 mL 1.27 mL 2.54 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Cholesterol internalization and metabolism in insect prothoracic gland, a steroidogenic organ, via lipoproteins

Steroids 2018 Jun;134:110-116.PMID:29410082DOI:10.1016/j.steroids.2018.01.012.

Dietary sterols including cholesterol and phytosterols are essential substrates for insect steroid hormone (ecdysteroid) synthesis in the prothoracic glands (PGs). In the silkworm Bombyx mori, one of the model species of insects, the steroidogenesis has been well demonstrated that cholesterol biotransformation into ecdysone in the PG cells. Because insects lack the ability to synthesize cellular sterol de novo, lipoprotein, lipophorin (Lp), has been thought to be the major cholesterol supply source; however, details of cholesterol behavior from Lp to the PG cells has not been analyzed till date. In this report, we developed Lp incorporation method using labeled cholesterols such as 22-NBD-cholesterol and cholesterol-25,26,26,26,27,27,27-d7 (Cholesterol-d7), and analyzed the internalization and metabolism of cholesterol in PGs in vitro using the silkworm Bombyx mori. The internalization of cholesterol was visualized using 22-NBD-cholesterol. PGs showed an enriched cellular 22-NBD-cholesterol signal, which dissociated from the Lp localizing at the close area of cell membrane. The distribution pattern observed in the PGs was different from other tissues such as the brain, fat body, and Malpighian tubules, suggesting that the internalization of cholesterol in the PGs was distinct from other tissues. The metabolism of cholesterol was traced using LC-MS/MS methods to detect Cholesterol-d7, 7-dehydrocholesterol-d7 (an expected intermediate metabolite), and the final product ecdysone-d6. 7-Dehydrocholesterol-d7 and ecdysone-d6 were detected in the PG culture incubated with labeled Lp, showing that the cholesterol of Lp was utilized for ecdysone synthesis in the PGs. Our results reveal the distinct behavior of cholesterol in the PGs, with the first direct evidence of biochemical fate of lipoprotein cholesterol in insect steroidogenic organ. This will aid in the understanding of the involvement of lipoprotein cholesterol in steroid hormone synthesis in insects.

Preparation of intravenous cholesterol tracer using current good manufacturing practices

J Lipid Res 2015 Dec;56(12):2393-8.PMID:26416797DOI:10.1194/jlr.D061762.

Studies of human reverse cholesterol transport require intravenous infusion of cholesterol tracers. Because insoluble lipids may pose risk and because it is desirable to have consistent doses of defined composition available over many months, we investigated the manufacture of cholesterol tracer under current good manufacturing practice (CGMP) conditions appropriate for phase 1 investigation. Cholesterol tracer was prepared by sterile admixture of unlabeled cholesterol or Cholesterol-d7 in ethanol with 20% Intralipid(®). The resulting material was filtered through a 1.2 micron particulate filter, stored at 4°C, and tested at time 0, 1.5, 3, 6, and 9 months for sterility, pyrogenicity, autoxidation, and particle size and aggregation. The limiting factor for stability was a rise in thiobarbituric acid-reacting substances of 9.6-fold over 9 months (P < 0.01). The emulsion was stable with the Z-average intensity-weighted mean droplet diameter remaining at 60 nm over 23 months. The zeta potential (a measure of negative surface charge protecting from aggregation) was unchanged at -36.2. Rapid cholesterol pool size was 25.3 ± 1.3 g. Intravenous cholesterol tracer was stable at 4°C for 9 months postproduction. CGMP manufacturing methods can be achieved in the academic setting and need to be considered for critical components of future metabolic studies.

Phytosterol glycosides reduce cholesterol absorption in humans

Am J Physiol Gastrointest Liver Physiol 2009 Apr;296(4):G931-5.PMID:19246636DOI:10.1152/ajpgi.00001.2009.

Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received approximately 300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg Cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma Cholesterol-d7 enrichment 4-5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6+/-4.8% (P<0.0001) and phytosterol esters 30.6+/-3.9% (P=0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content.

Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization

Anal Chem 2009 Sep 15;81(18):7618-24.PMID:19746995DOI:10.1021/ac901003u.

Direct and rapid analysis of cholesterol was accomplished in the ambient environment using reactive desorption electrospray ionization (DESI) mass spectrometry. This was achieved by electrospraying reagent solutions in the form of high velocity charged droplets at surfaces such as dried serum samples and animal tissue sections. Betaine aldehyde, incorporated into the spray solvent, reacts selectively and rapidly with the alcohol group of cholesterol by nucleophilic addition, forming a hemiacetal salt. Limits of detection for pure cholesterol and related compounds were approximately 1 ng when a solution of cholesterol of 1 microg/mL was spotted onto the surface. Quantitative analysis of free cholesterol in serum using reactive DESI was demonstrated using Cholesterol-d7 as internal standard. High throughput analysis of small volumes of serum spotted onto a suitable substrate was achieved at an analysis rate of approximately 14 s per sample, with a relative standard deviation (RSD) of ca. 6%. Use of reactive DESI in the imaging mode allowed 2D spatial distributions of phospholipids and cholesterol to be recorded simultaneously in rat brain tissues.

Total serum cholesterol by isotope dilution/mass spectrometry: a candidate definitive method

Clin Chem 1980 Jun;26(7):854-60.PMID:6991160doi

We describe a highly accurate and precise method for determination of total cholesterol in serum by isotope dilution/mass spectrometry. The method was developed for a Study Group of the Committee on Standards of the American Association for Clinical Chemistry, for use in establishing the accuracy of a candidate reference method for total cholesterol, and fulfills their criteria for a definitive method. Cholesterol-d7 is added to serum, with the weight ratio of Cholesterol-d7 to total serum cholesterol kept near to 1:1. The esters are hydrolyzed and the cholesterol is separated and converted into the trimethylsilyl ether derivative for measurement by combined gas chromatography/mass spectrometry. The intensity ratio of the molecular ions at m/z 465 and 458 is measured for each sample and for two calibration mixtures, according to a prescribed bracketing protocol. A weight ratio for the sample is obtained by linear interpolation of the ion-intensity ratios, and the total cholesterol is then calculated. The method was applied four times over several weeks to each of five serum pools. Statistical analysis involving consideration of both replication error and variability between weeks gave a coefficient of variation for a single measurement of 0.36%. The absence of interferences in the method was demonstrated by measurements at several other masses.