Home>>Signaling Pathways>> Ubiquitination/ Proteasome>>Boc-LRR-AMC

Boc-LRR-AMC Sale

(Synonyms: Boc-Leu-Arg-Arg-AMC, Boc-Leu-Arg-Arg-7-amido-4-Methylcoumarin) 目录号 : GC42958

A fluorogenic substrate for trypsin-like activity of the 26S proteasome or 20S proteolytic core

Boc-LRR-AMC Chemical Structure

Cas No.:109358-46-5

规格 价格 库存 购买数量
1mg
¥449.00
现货
5mg
¥1,348.00
现货
10mg
¥2,478.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Boc-LRR-AMC is a fluorogenic substrate for the trypsin-like activity of the 26S proteasome or 20S proteolytic core. Upon enzymatic cleavage by the 26S proteasome or 20S proteolytic core, amino-4-methylcoumarin (AMC) is released and its fluorescence can be used to quantify 26S proteasome or 20S proteolytic core trypsin-like activity. AMC displays excitation/emission maxima of 340-360/440-460 nm, respectively.

Chemical Properties

Cas No. 109358-46-5 SDF
别名 Boc-Leu-Arg-Arg-AMC, Boc-Leu-Arg-Arg-7-amido-4-Methylcoumarin
Canonical SMILES O=C1C=C(C)C2=C(C=C(NC([C@H](CCCNC(N)=N)NC([C@H](CCCNC(N)=N)NC([C@H](CC(C)C)NC(OC(C)(C)C)=O)=O)=O)=O)C=C2)O1
分子式 C33H52N10O7 分子量 700.8
溶解度 DMF: 14 mg/ml,DMSO: 12 mg/ml,Ethanol: 10 mg/ml,PBS (pH 7.2): 1 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.4269 mL 7.1347 mL 14.2694 mL
5 mM 0.2854 mL 1.4269 mL 2.8539 mL
10 mM 0.1427 mL 0.7135 mL 1.4269 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Enzymatic analysis of recombinant Japanese encephalitis virus NS2B(H)-NS3pro protease with fluorogenic model peptide substrates

PLoS One 2012;7(5):e36872.PMID:22615830DOI:PMC3352935

Background: Japanese encephalitis virus (JEV), a member of the Flaviviridae family, causes around 68,000 encephalitis cases annually, of which 20-30% are fatal, while 30-50% of the recovered cases develop severe neurological sequelae. Specific antivirals for JEV would be of great importance, particularly in those cases where the infection has become persistent. Being indispensable for flaviviral replication, the NS2B-NS3 protease is a promising target for design of anti-flaviviral inhibitors. Contrary to related flaviviral proteases, the JEV NS2B-NS3 protease is structurally and mechanistically much less characterized. Here we aimed at establishing a straightforward procedure for cloning, expression, purification and biochemical characterization of JEV NS2B(H)-NS3pro protease. Methodology/principal findings: The full-length sequence of JEV NS2B-NS3 genotype III strain JaOArS 982 was obtained as a synthetic gene. The sequence of NS2B(H)-NS3pro was generated by splicing by overlap extension PCR (SOE-PCR) and cloned into the pTrcHisA vector. Hexahistidine-tagged NS2B(H)-NS3pro, expressed in E. coli as soluble protein, was purified to >95% purity by a single-step immobilized metal affinity chromatography. SDS-PAGE and immunoblotting of the purified enzyme demonstrated NS2B(H)-NS3pro precursor and its autocleavage products, NS3pro and NS2B(H), as 36, 21, and 10 kDa bands, respectively. Kinetic parameters, K(m) and k(cat), for fluorogenic protease model substrates, Boc-GRR-amc, Boc-LRR-AMC, Ac-nKRR-amc, Bz-nKRR-amc, Pyr-RTKR-amc and Abz-(R)(4)SAG-nY-amide, were obtained using inner filter effect correction. The highest catalytic efficiency k(cat)/K(m) was found for Pyr-RTKR-amc (k(cat)/K(m): 1962.96 ± 85.0 M(-1) s(-1)) and the lowest for Boc-LRR-AMC (k(cat)/K(m): 3.74±0.3 M(-1) s(-1)). JEV NS3pro is inhibited by aprotinin but to a lesser extent than DEN and WNV NS3pro. Conclusions/significance: A simplified procedure for the cloning, overexpression and purification of the NS2B(H)-NS3pro was established which is generally applicable to other flaviviral proteases. Kinetic parameters obtained for a number of model substrates and inhibitors, are useful for the characterization of substrate specificity and eventually for the design of high-throughput assays aimed at antiviral inhibitor discovery.