Home>>Signaling Pathways>> Others>> Others>>Anti-inflammatory agent 1

Anti-inflammatory agent 1 Sale

(Synonyms: 抗炎剂1) 目录号 : GC31976

Anti-inflammatoryagent1是一种抗炎剂,来自专利WO2009003229A1实例36。

Anti-inflammatory agent 1 Chemical Structure

Cas No.:1096621-42-9

规格 价格 库存 购买数量
1mg
¥2,678.00
现货
5mg
¥5,355.00
现货
10mg
¥9,104.00
现货
20mg
¥16,065.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Anti-inflammatory agent 1 is an anti-inflammatory agent extracted from patent WO 2009003229 A1, example 36.

[1]. Eleanor Eiffe, et al. 2-substituted isoflavonoid compounds, medicaments and uses. WO 2009003229 A1.

Chemical Properties

Cas No. 1096621-42-9 SDF
别名 抗炎剂1
Canonical SMILES OC1=CC=C2C=C(C3=CC=C(O)C=C3)C(SCC)OC2=C1
分子式 C17H16O3S 分子量 300.37
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.3292 mL 16.6461 mL 33.2923 mL
5 mM 0.6658 mL 3.3292 mL 6.6585 mL
10 mM 0.3329 mL 1.6646 mL 3.3292 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Colchicine and the heart

Colchicine is a unique, sophisticated anti-inflammatory agent that has been used for decades for the prevention of acute inflammatory flares in gout and familial Mediterranean fever. In recent years, clinical trials have demonstrated its potential in a range of cardiovascular (CV) conditions. Colchicine is avidly taken up by leucocytes, and its ability to bind to tubulin and interfere with microtubular function affects the expression of cytokines and interleukins, and the ability of neutrophils to marginate, ingress, aggregate, express superoxide, release neutrophil extracellular traps, and interact with platelets. In patients with acute and recurrent pericarditis, clinical trials in >1600 patients have consistently shown that colchicine halves the risk of recurrence [relative risk (RR) 0.50, 95% confidence interval (CI) 0.42-0.60]. In patients with acute and chronic coronary syndromes, multicentre randomized controlled trials in >11 000 patients followed for up to 5 years demonstrated that colchicine may reduce the risk of CV death, myocardial infarction, ischaemic stroke and ischaemia-driven revascularization by >30% (RR 0.63, 95% CI 0.49-0.81). The use of colchicine at doses of 0.5-1.0 mg daily in CV trials has proved safe. Early gastrointestinal intolerance limits its use in ?10% of patients; however, ?90% of patients tolerate it well over the long term. Despite isolated case reports, clinically relevant drug interactions with moderate to strong CYP3A4 inhibitors/competitors or P-glycoprotein inhibitors/competitors are rare if this dosage of colchicine is used in the absence of advanced renal or liver disease. The aim of this review is to summarize the contemporary data supporting the efficacy and safety of colchicine in patients with CV disease.

Arzanol, a potent mPGES-1 inhibitor: novel anti-inflammatory agent

Arzanol is a novel phloroglucinol α -pyrone, isolated from a Mediterranean plant Helichrysum italicum (Roth) Don ssp. microphyllum which belongs to the family Asteraceae. Arzanol has been reported to possess a variety of pharmacological activities. However, anti-inflammatory, anti-HIV, and antioxidant activities have been studied in some detail. Arzanol has been reported to inhibit inflammatory transcription factor NF κB activation, HIV replication in T cells, releases of IL-1 β , IL-6, IL-8, and TNF-α , and biosynthesis of PGE? by potentially inhibiting mPGES-1 enzyme. Diversity of mechanisms of actions of arzanol may be useful in treatment of disease involving these inflammatory mediators such as autoimmune diseases and cancer. This review presents comprehensive information on the chemistry, structure-activity relationship, and pharmacological activities of arzanol. In addition this review discusses recent developments and the scope for future research in these aspects.

Anti-inflammatory effects of oral supplementation with curcumin: a systematic review and meta-analysis of randomized controlled trials

Context: Chronic inflammation is a major contributor to the development of noncommunicable diseases. Curcumin, a bioactive polyphenol from turmeric, is a well-known anti-inflammatory agent in preclinical research. Clinical evidence remains inconclusive because of discrepancies regarding optimal dosage, duration, and formulation of curcumin.
Objective: The aim of this systematic review, conducted and reported in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and checklist, was to evaluate the efficacy of curcumin supplementation on systemic inflammatory mediators, comparing dose, duration, and bioavailability status of interventions.
Data sources: The Medline, CINAHL, EMBASE, Scopus, and Cochrane literature databases were searched from 1980 to May-end 2019. Randomized controlled trials investigating effects of dietary curcumin on inflammatory mediators in humans not receiving anti-inflammatory treatment were eligible for inclusion. Two authors independently assessed titles and abstracts of identified articles for potential eligibility and respective, retrieved, full-text articles; disagreements were resolved by a third author. Evidence quality was critically appraised using the Quality Criteria Checklist for Primary Research.
Data extraction: Thirty-two trials (N = 2,038 participants) were included and 28 were meta-analyzed using a random-effects model; effect sizes were expressed as Hedges' g (95%CI).
Data analysis: Pooled data (reported here as weighted mean difference [WMD]; 95%CI) showed a reduction in C-reactive protein (-1.55 mg/L; -1.81 to -1.30), interleukin-6 (-1.69 pg/mL, -2.56 to -0.82), tumor necrosis factor α (-3.13 pg/mL; -4.62 to -1.64), IL-8 (-0.54 pg/mL; -0.82 to -0.28), monocyte chemoattractant protein-1 (-2.48 pg/mL; -3.96 to -1.00), and an increase in IL-10 (0.49 pg/mL; 0.10 to 0.88), with no effect on intracellular adhesion molecule-1.
Conclusion: These findings provide evidence for the anti-inflammatory effects of curcumin and support further investigation to confirm dose, duration, and formulation to optimize anti-inflammatory effects in humans with chronic inflammation.
Systematic review registration: PROSPERO registration no. CRD42019148682.

Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases

Although safe in most cases, ancient treatments are ignored because neither their active component nor their molecular targets are well defined. This is not the case, however, with curcumin, a yellow-pigment substance and component of turmeric (Curcuma longa), which was identified more than a century ago. For centuries it has been known that turmeric exhibits anti-inflammatory activity, but extensive research performed within the past two decades has shown that this activity of turmeric is due to curcumin (diferuloylmethane). This agent has been shown to regulate numerous transcription factors, cytokines, protein kinases, adhesion molecules, redox status and enzymes that have been linked to inflammation. The process of inflammation has been shown to play a major role in most chronic illnesses, including neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. In the current review, we provide evidence for the potential role of curcumin in the prevention and treatment of various proinflammatory chronic diseases. These features, combined with the pharmacological safety and negligible cost, render curcumin an attractive agent to explore further.

Glucagon-like peptide-1 receptor agonists as anti-inflammatory agents: A potential mode of cardiovascular benefits