Home>>Signaling Pathways>> Neuroscience>> Amyloid β>>ALZ-801

ALZ-801 Sale

(Synonyms: ALZ-801) 目录号 : GC62834

ALZ-801 是一种有效的口服小分子 β-淀粉样蛋白 (Aβ) 抗寡聚体和聚集抑制剂,与母体化合物相比,具有显着改善的 PK 特性和胃肠道耐受性的曲米酸的缬氨酸结合前药。

ALZ-801 Chemical Structure

Cas No.:1034190-08-3

规格 价格 库存 购买数量
10mM (in 1mL Water)
¥847.00
现货
1mg
¥350.00
现货
5mg
¥770.00
现货
10mg
¥1,330.00
现货
25mg
¥2,940.00
现货
50mg
¥5,250.00
现货
100 mg
¥9,590.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

ALZ-801 is a potent and orally available small-molecule β-amyloid (Aβ) anti-oligomer and aggregation inhibitor, valine-conjugated prodrug of Tramiprosate with substantially improved PK properties and gastrointestinal tolerability compared with the parent compound[1]. ALZ-801 is an advanced and markedly improved candidate for the treatment of alzheimer’s disease[2].

ALZ-801 (oral administration; 172 mg/kg; single dose) exhibits mean AUCt values of 58,758 and 5841 ng/ml.h in plasma and brain, respectively. The ALZ-801: Tramiprosate ratio in plasma and brain is 1.8 and 3.1, respectively in male CD-1 mice[1].

[1]. John A. Hey, et al. Discovery and Identification of an Endogenous Metabolite of Tramiprosate and Its Prodrug ALZ-801 that Inhibits Beta Amyloid Oligomer Formation in the Human Brain. CNS Drugs. 2018; 32(9): 849-861.
[2]. Hey JA, et al. Clinical Pharmacokinetics and Safety of ALZ-801, a Novel Prodrug of Tramiprosate in Development for the Treatment of Alzheimer’s Disease. Clin Pharmacokinet. 2018 Mar;57(3):315-333.

Chemical Properties

Cas No. 1034190-08-3 SDF
别名 ALZ-801
分子式 C8H18N2O4S 分子量 238.3
溶解度 Water : 250 mg/mL (1049.10 mM; Need ultrasonic) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.1964 mL 20.982 mL 41.9639 mL
5 mM 0.8393 mL 4.1964 mL 8.3928 mL
10 mM 0.4196 mL 2.0982 mL 4.1964 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer's disease with potential for near term approval

Alzheimers Res Ther 2020 Aug 12;12(1):95.PMID:32787971DOI:10.1186/s13195-020-00663-w.

The body of evidence suggesting a causative, initiating role of beta amyloid (Aβ) in the pathogenesis of Alzheimer's disease (AD) is substantial. Yet, only a few anti-amyloid agents have shown meaningful efficacy in clinical trials. We evaluated the unifying characteristics of anti-amyloid agents with positive clinical or biomarker effects in long-duration trials and analyzed how pharmacological characteristics determine their clinical product profiles. Four agents with the potential for near term approval fulfill these criteria: the injectable antibodies, aducanumab, gantenerumab, and BAN2401, and a small molecule oral agent, ALZ-801. Aducanumab and BAN2401 showed significant efficacy on both clinical and biomarker outcomes; gantenerumab showed significant biomarker effects, with no clinical efficacy reported to date; and ALZ-801 showed significant clinical effects in the high-risk population of patients homozygous for the ε4 allele of apolipoprotein E gene (APOE4) and a dose-dependent preservation of hippocampal volume. We explored how the pharmacological properties of these agents, namely selectivity for Aβ oligomers, plasma half-life, brain penetration, and time to peak brain exposure, determine their clinical profiles. A crucial characteristic shared by these agents is their ability to engage neurotoxic soluble Aβ oligomers, albeit to various degrees. Aducanumab and gantenerumab partially target oligomers, while mostly clearing insoluble amyloid plaques; BAN2401 preferentially targets soluble protofibrils (large oligomers) over plaques; and ALZ-801 blocks the formation of oligomers without binding to plaques. The degree of selectivity for Aβ oligomers and brain exposure drive the magnitude and onset of clinical efficacy, while the clearance of plaques is associated with vasogenic brain edema. Only the highest doses of aducanumab and BAN2401 show modest efficacy, and higher dosing is limited by increased risk of vasogenic edema, especially in APOE4 carriers. These limitations can be avoided, and efficacy improved by small molecule agents that selectively inhibit the formation or block the toxicity of Aβ oligomers without clearing amyloid plaques. The most advanced selective anti-oligomer agent is ALZ-801, an optimized oral prodrug of tramiprosate, which demonstrated efficacy in homozygous APOE4/4 AD subjects. ALZ-801 selectively and fully inhibits the formation of Aβ42 oligomers at the clinical dose, without evidence of vasogenic edema, and will be evaluated in a phase 3 trial in homozygous APOE4/4 patients with early AD. In addition to clinical measures, the phase 3 trial will include cerebrospinal fluid, plasma, and imaging biomarkers to gain further insights into the role of soluble Aβ oligomers in the pathogenesis of AD and their impact on disease progression.

The path forward in Alzheimer's disease therapeutics: Reevaluating the amyloid cascade hypothesis

Alzheimers Dement 2020 Nov;16(11):1553-1560.PMID:31706733DOI:10.1016/j.jalz.2019.09.075.

Development of disease-modifying treatments for Alzheimer's disease (AD) has been challenging, with no drugs approved to date. The failures of several amyloid-targeted programs have led many to dismiss the amyloid beta (Aβ) hypothesis of AD. An antiamyloid antibody aducanumab recently showed modest but significant efficacy in a phase 3 trial, providing important validation of amyloid as a therapeutic target. However, the inconsistent results observed with aducanumab may be explained by the limited brain penetration and lack of selectivity for the soluble Aβ oligomers, which are implicated as upstream drivers of neurodegeneration by multiple studies. Development of agents that can effectively inhibit Aβ oligomer formation or block their toxicity is therefore warranted. An ideal drug would cross the blood-brain barrier efficiently and achieve sustained brain levels that can continuously prevent oligomer formation or inhibit their toxicity. A late-stage candidate with these attributes is ALZ-801, an oral drug with a favorable safety profile and high brain penetration that can robustly inhibit Aβ oligomer formation. An upcoming phase 3 trial with ALZ-801 in APOE4/4 homozygous patients with early AD will effectively test this amyloid oligomer hypothesis.

Neurotoxic Soluble Amyloid Oligomers Drive Alzheimer's Pathogenesis and Represent a Clinically Validated Target for Slowing Disease Progression

Int J Mol Sci 2021 Jun 14;22(12):6355.PMID:34198582DOI:10.3390/ijms22126355.

A large body of clinical and nonclinical evidence supports the role of neurotoxic soluble beta amyloid (amyloid, Aβ) oligomers as upstream pathogenic drivers of Alzheimer's disease (AD). Recent late-stage trials in AD that have evaluated agents targeting distinct species of Aβ provide compelling evidence that inhibition of Aβ oligomer toxicity represents an effective approach to slow or stop disease progression: (1) only agents that target soluble Aβ oligomers show clinical efficacy in AD patients; (2) clearance of amyloid plaque does not correlate with clinical improvements; (3) agents that predominantly target amyloid monomers or plaque failed to show clinical effects; and (4) in positive trials, efficacy is greater in carriers of the ε4 allele of apolipoprotein E (APOE4), who are known to have higher brain concentrations of Aβ oligomers. These trials also show that inhibiting Aβ neurotoxicity leads to a reduction in tau pathology, suggesting a pathogenic sequence of events where amyloid toxicity drives an increase in tau formation and deposition. The late-stage agents with positive clinical or biomarker data include four antibodies that engage Aβ oligomers (aducanumab, lecanemab, gantenerumab, and donanemab) and ALZ-801, an oral agent that fully blocks the formation of Aβ oligomers at the clinical dose.

Clinical Pharmacokinetics and Safety of ALZ-801, a Novel Prodrug of Tramiprosate in Development for the Treatment of Alzheimer's Disease

Clin Pharmacokinet 2018 Mar;57(3):315-333.PMID:29063518DOI:10.1007/s40262-017-0608-3.

Background: ALZ-801 is an orally available, valine-conjugated prodrug of tramiprosate. Tramiprosate, the active agent, is a small-molecule β-amyloid (Aβ) anti-oligomer and aggregation inhibitor that was evaluated extensively in preclinical and clinical investigations for the treatment of Alzheimer's disease (AD). Tramiprosate has been found to inhibit β-amyloid oligomer formation by a multi-ligand enveloping mechanism of action that stabilizes Aβ42 monomers, resulting in the inhibition of formation of oligomers and subsequent aggregation. Although promising as an AD treatment, tramiprosate exhibited two limiting deficiencies: high intersubject pharmacokinetic (PK) variability likely due to extensive gastrointestinal metabolism, and mild-to-moderate incidence of nausea and vomiting. To address these, we developed an optimized prodrug, ALZ-801, which retains the favorable efficacy attributes of tramiprosate while improving oral PK variability and gastrointestinal tolerability. In this study, we summarize the phase I bridging program to evaluate the safety, tolerability and PK for ALZ-801 after single and multiple rising dose administration in healthy volunteers. Methods: Randomized, placebo-controlled, phase I studies in 127 healthy male and female adult and elderly volunteers included [1] a single ascending dose (SAD) study; [2] a 14-day multiple ascending dose (MAD) study; and [3] a single-dose tablet food-effect study. This program was conducted with both a loose-filled capsule and an immediate-release tablet formulation, under both fasted and fed conditions. Safety and tolerability were assessed, and plasma and urine were collected for liquid chromatography-mass spectrometry (LC-MS) determination and non-compartmental PK analysis. In addition, we defined the target dose of ALZ-801 that delivers a steady-state plasma area under the curve (AUC) exposure of tramiprosate equivalent to that studied in the tramiprosate phase III study. Results: ALZ-801 was well tolerated and there were no severe or serious adverse events (AEs) or laboratory findings. The most common AEs were transient mild nausea and some instances of vomiting, which were not dose-related and showed development of tolerance after continued use. ALZ-801 produced dose-dependent maximum plasma concentration (C max) and AUC exposures of tramiprosate, which were equivalent to that after oral tramiprosate, but with a substantially reduced intersubject variability and a longer elimination half-life. Administration of ALZ-801 with food markedly reduced the incidence of gastrointestinal symptoms compared with the fasted state, without affecting plasma tramiprosate exposure. An immediate-release tablet formulation of ALZ-801 displayed plasma exposure and low variability similar to the loose-filled capsule. ALZ-801 also showed excellent dose-proportionality without accumulation or decrease in plasma exposure of tramiprosate over 14 days. Based on these data, 265 mg of ALZ-801 twice daily was found to achieve a steady-state AUC exposure of tramiprosate equivalent to 150 mg twice daily of oral tramiprosate in the previous phase III trials. Conclusions: ALZ-801, when administered in capsule and tablet forms, showed excellent oral safety and tolerability in healthy adults and elderly volunteers, with significantly improved PK characteristics over oral tramiprosate. A clinical dose of ALZ-801 (265 mg twice daily) was established that achieves the AUC exposure of 150 mg of tramiprosate twice daily, which showed positive cognitive and functional improvements in apolipoprotein E4/4 homozygous AD patients. These bridging data support the phase III development of ALZ-801in patients with AD.

Promising candidates from drug clinical trials: Implications for clinical treatment of Alzheimer's disease in China

Front Neurol 2022 Nov 15;13:1034243.PMID:36457865DOI:10.3389/fneur.2022.1034243.

Alzheimer's disease is the most common neurodegenerative disease. Prior to 2017, National Medical Products Administration approved only four drugs to treat Alzheimer's disease, including three cholinesterase inhibitors and one N-methyl-D-aspartate receptor antagonist. We queried ClinicalTrials.gov to better understand Alzheimer's drug development over the past 5 years and found 16 promising candidates that have entered late-stage trials and analyzed their impact on clinical treatment of Alzheimer's disease in China. The 16 compounds selected include disease-modifying therapies and symptomatic therapies. The research and development pipeline now focuses on disease-modifying therapies such as gantenerumab, aducanumab, ALZ-801, ALZT-OP1, donanemab, lecanemab, simufilam, NE3107, semaglutide, and GV-971, which could put an end to the situation where Alzheimer's patients in China have no effective treatment alternatives. The reuse of drugs or combinations currently under investigation for the psychiatric treatment of Alzheimer's disease, including AXS-05, AVP-786, nabilone, brexpiprazole, methylphenidate, and pimavanserin, could provide physicians with additional treatment options. Although most of these drugs have not been explored in China yet, due to the current development trend in this field in China, it is expected that China will be involved in research on these drugs in the future.