Home>>Signaling Pathways>> Apoptosis>> Caspase>>Z-VAD-FMK

Z-VAD-FMK Sale

(Synonyms: 氟甲基酮,Benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone,Z-Val-Ala-Asp(OMe)-FMK) 目录号 : GC12861

Z-VAD-FMK(Z-Val-Ala-Asp(OMe)-FMK)是一种可渗透细胞并且不可逆的泛caspase抑制剂。 Z-VAD-FMK也是一种泛素羧基末端水解酶L1(UCHL1)抑制剂。 Z-VAD-FMK通过针对UCHL1的活性位点,使其发生不可逆修饰,从而起到作用。

Z-VAD-FMK Chemical Structure

Cas No.:187389-52-2

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥1,050.00
现货
1mg
¥399.00
现货
5mg
¥1,092.00
现货
10mg
¥1,953.00
现货
25mg
¥2,741.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

客户使用产品发表文献 13

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Cell experiment [1]:

Cell lines

CD4+ and CD8+ T cells

Preparation Method

Soluble in DMSO to 20 mM

Reaction Conditions

100 μM, 24 h

Applications

Z-VAD-FMK is immunosuppressive in vitro and inhibit T cell proliferation without blocking the processing of caspase-8 and caspase-3.

Animal experiment [2]:

Animal models

C57BL/6 Mice (Treatment with LPS)

Preparation Method

Soluble in DMSO to 20 mM

Dosage form

20 μg/g, i.p.

Applications

Z-VAD-FMK treatment alleviates LPS-induced endotoxic shock by inducing macrophage necroptosis and promoting MDSC-mediated inhibition of macrophage activation.

References:

[1]. Lawrence CP, Chow SC. Suppression of human T cell proliferation by the caspase inhibitors, z-VAD-FMK and z-IETD-FMK is independent of their caspase inhibition properties. Toxicol Appl Pharmacol. 2012 Nov 15;265(1):103-12.

[2]. Li X, Yao X, Zhu Y, et al. The Caspase Inhibitor Z-VAD-FMK Alleviates Endotoxic Shock via Inducing Macrophages Necroptosis and Promoting MDSCs-Mediated Inhibition of Macrophages Activation. Front Immunol. 2019 Aug 2;10:1824.

产品描述

Z-VAD-FMK (Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone), an ICE-like protease inhibitor, inhibits apoptosis by preventing the processing of CPP32 to its active form. [3]

Z-VAD-FMK is immunosuppressive in vitro and inhibit T cell proliferation without blocking the processing of caspase-8 and caspase-3. Z-VAD-FMK is capable of inhibiting T cell proliferation induced by anti-CD3 plus anti-CD28 or PHA. Besides, z-VAD-FMK inhibits caspase processing during apoptosis but not during T cell activation. Z-VAD-FMK Inhibits caspase processing and apoptosis induction in tumor cells in vitro (IC50 = 0.0015 - 5.8 mM). [1]

Z-VAD-FMK, can be used to induce necroptosis under certain stimuli. Treatment of mice with Z-VAD-FMK could significantly reduce mortality and alleviate disease after lipopolysaccharide (LPS) challenge. Notably, in LPS-challenged mice, treatment with Z-VAD-FMK could also reduce the percentage of peritoneal macrophages by promoting necroptosis and inhibiting pro-inflammatory responses in macrophages. What’s more, pretreatment with Z-VAD-FMK promoted LPS-induced nitric oxide-mediated necroptosis of bone marrow-derived macrophages (BMDMs), leading to reduced pro-inflammatory cytokine secretion. Interestingly, Z-VAD-FMK treatment promoted the accumulation of myeloid-derived suppressor cells (MDSCs) in a mouse model of endotoxin shock, and this process inhibited LPS-induced pro-inflammatory responses in macrophages. Treatment with Z-VAD-FMK alleviates LPS-induced endotoxic shock by inducing macrophage necroptosis and promoting MDSC-mediated inhibition of macrophage activation. For in vivo experienment, the mice were pretreated or post-treated with Z-VAD-FMK (5, 10, and 20 μg/g of body weight) or vehicle (saline) for 2 h and endotoxic shock was induced by an intraperitoneal injection of LPS (10 μg/g of body weight) and saline was used as control. [2]

Z-VAD-FMK(苄氧羰基-Val-Ala-Asp(OMe)氟甲基酮),是一种类似ICE的蛋白酶抑制剂,通过阻止CPP32转化为其活性形式来抑制细胞凋亡。[3]

Z-VAD-FMK是一种体外免疫抑制剂,可以抑制T细胞增殖,但不会阻止caspase-8和caspase-3的处理。 Z-VAD-FMK能够抑制由anti-CD3加anti-CD28或PHA诱导的T细胞增殖。此外,z-VAD-FMK在凋亡期间可以抑制caspase的处理,但在T细胞激活期间则不能。 Z-VAD-FMK还能够体外抑制肿瘤细胞中caspase的处理和凋亡诱导(IC50 = 0.0015 - 5.8 mM)。[1]

Z-VAD-FMK可以在某些刺激下诱导坏死程序性细胞死亡。用Z-VAD-FMK治疗小鼠可显著降低脂多糖(LPS)挑战后的死亡率和缓解疾病。值得注意的是,在LPS挑战的小鼠中,使用Z-VAD-FMK治疗还可以通过促进坏死程序性细胞死亡并抑制巨噬细胞中的促炎反应来减少腹腔巨噬细胞的百分比。此外,预处理Z-VAD-FMK可促进LPS诱导一氧化氮介导的骨髓源性巨噬细胞(BMDMs)坏死程序性细胞死亡,从而减少促炎因子分泌。有趣的是,在内毒素休克小鼠模型中,Z-VAD-FMK处理促进了造血来源抑制性细胞(MDSCs)积累,并且这个过程抑制了LPS诱导巨噬细胞产生促炎反应。使用Z-VAD-FMK治疗通过诱导巨噬细胞坏死程序性细胞死亡和促进MDSC介导的巨噬细胞活化抑制来缓解LPS诱导的内毒素休克。在体内实验中,小鼠预处理或后处理Z-VAD-FMK(5、10和20μg/g体重)或载体(生理盐水)2小时,并通过腹腔注射LPS(10μg/g体重)诱导内毒素休克,使用生理盐水作为对照组。[2]

References:
[1]. Lawrence CP, Chow SC. Suppression of human T cell proliferation by the caspase inhibitors, z-VAD-FMK and z-IETD-FMK is independent of their caspase inhibition properties. Toxicol Appl Pharmacol. 2012 Nov 15;265(1):103-12.
[2]. Li X, Yao X, Zhu Y, et al. The Caspase Inhibitor Z-VAD-FMK Alleviates Endotoxic Shock via Inducing Macrophages Necroptosis and Promoting MDSCs-Mediated Inhibition of Macrophages Activation. Front Immunol. 2019 Aug 2;10:1824.
[3]. Slee EA, Zhu H, et al. Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. Biochem J. 1996 Apr 1;315 (Pt 1) (Pt 1):21-4.

Chemical Properties

Cas No. 187389-52-2 SDF
别名 氟甲基酮,Benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone,Z-Val-Ala-Asp(OMe)-FMK
化学名 methyl (3S)-5-fluoro-3-[[(2S)-2-[[(2S)-3-methyl-2-(phenylmethoxycarbonylamino)butanoyl]amino]propanoyl]amino]-4-oxopentanoate
Canonical SMILES CC(C)C(C(=O)NC(C)C(=O)NC(CC(=O)OC)C(=O)CF)NC(=O)OCC1=CC=CC=C1
分子式 C22H30FN3O7 分子量 467.49
溶解度 ≥ 23.37mg/mL in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.1391 mL 10.6954 mL 21.3908 mL
5 mM 0.4278 mL 2.1391 mL 4.2782 mL
10 mM 0.2139 mL 1.0695 mL 2.1391 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Effect of caspase inhibitor Z-VAD-FMK on bovine sperm cryotolerance

The aim of this study was to evaluate the treatment of bovine semen with the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK), before or after freezing on semen quality. After the initial assessment, sperm from 4 bulls were pooled (Experiment 1) and cryopreserved in BioXcell containing 0, 20 and 100 μM Z-VAD-FMK. After thawing semen viability, motility, membrane integrity, as well as DNA fragmentation and ΔΨm were evaluated. In Experiment 2, bovine frozen/thawed sperm were incubated for 1 hr with 0, 20 and 100 ?M Z-VAD-FMK before assessing the semen quality. The treatment with Z -VAD-FMK before cryopreservation improved post-thawing sperm motility compared to the control group (p < .05), while no differences were recorded in sperm viability and membrane integrity among groups (on average 86.8 ± 1.5 and 69.1 ± 1.4, respectively). Interestingly, at the highest concentration, DNA fragmentation decreased (p < .05), while the percentage of spermatozoa with high ΔΨm increased (p < .05). The results of Experiment 2 showed that 1-hr treatment with Z-VAD-FMK did not affect sperm motility and viability (on average 63.4 ± 5.8 and 83.7.1 ± 1.2, respectively). However, Z-VAD-FMK improved sperm membrane integrity (p < .05) and at the highest concentration tested decreased the proportion of sperm showing DNA fragmentation (p < .05). No differences were recorded in the percentage of spermatozoa with high ΔΨm (on average 57.0 ± 11.4). In conclusion, the treatment with 100 ?M of the caspase inhibitor Z-VAD-FMK before freezing increased bovine sperm mass motility and ΔΨm, while decreasing sperm DNA fragmentation. Treatment of semen after thawing with 100 ?M Z-VAD-FMK improved sperm membrane integrity and reduced DNA fragmentation.

Effect of anti-apoptotic drug Z-VAD-FMK on in vitro viability of dog follicles

It is recognized that ovarian follicular atresia is associated with apoptosis, and the most important effector of cell death is caspase-3. The aim of this study was to investigate the influence of anti-apoptotic drug Z-VAD-FMK on in vitro follicle growth in the domestic dog. Ovaries were obtained from peri-pubertal and adult domestic dogs, and cortical fragments recovered and incubated on 1.5% (w/v) agarose gel blocks within a 24-well culture plate containing Minimum Essential Medium Eagle-Alpha Modification (αMEM) supplemented with 4.2 μg/mL insulin, 3.8 μg/mL transferrin, 5 ng/mL selenium, 2 mM L-glutamine, 100 μg/mL of penicillin G sodium, 100 μg/mL of streptomycin sulfate, 0.05 mM ascorbic acid, 10 ng/mL of FSH and 0.1% (w/v) polyvinyl alcohol in humidified atmosphere of 5% CO2 and 5% O2. The cortices were randomly allocated in six treatments: 1) 10 ng/mL EGF (EGF V0); 2) 10 ng/mL of EGF plus 1 mM Z-VAD-FMK (EGF V1); 3) 10 ng/mL of EGF and 10 mM Z-VAD-FMK (EGF V10); 4) 1 mM Z-VAD-FMK; 5) 10 mM Z-VAD-FMK and (6) no EGF and Z-VAD-FMK supplementation (Control). The cortices were processed for histology and assessed for viability (based on morphology), density of structurally normal follicles, and diameter immediately after collection (non-culture Control) or after 3 or 7 days of in vitro incubation. Evaluation of mRNA expression of Cas3 in fresh cortices and those incubated for 3 days was performed using real-time PCR. Histological analysis revealed that in vitro incubation decreased (P < 0.05) follicle viability and density compared to the fresh, non-culture control. Addition of 10 μM of Z-VAD-FMK alone to the culture medium sustained follicle viability at Day 3, but did not impact follicle diameter when compared to the other treatment groups (p < 0.001); however, the beneficial benefit of this anti-apoptotic drug diminished after 7 days of incubation. Furthermore, Z-VAD-FMK supplementation did not impact Cas3 expression. The findings demonstrated that dog ovarian tissues are highly susceptible to in vitro incubation and Z-VAD-FMK supported short-term survival of dog follicles enclosed within the ovarian cortex.

Role of HMGB1 in TNF-α Combined with Z-VAD-fmk-Induced L929 Cells Necroptosis

The present study established a necroptosis model in vitro and investigated the role of HMGB1 in cell necroptosis. A combination of tumor necrosis factor-α and z-VAD-fmk was used to induce necroptosis in L929 cells with necroptosis inhibitor necrostatin-1 applied as an intervention. Flow cytometry and transmission electron microscopy (TEM) were used to measure cell necroptosis. Western blotting assay was applied to detect the expression of receptor-interacting serine/threonine-protein kinase 3 (RIPK3), mixed lineage kinase domain-like pseudokinase (MLKL) and HMGB1. Co-immunoprecipitation (Co-IP) assay was used to confirm the interaction between HMGB1 and RIPK3. Our study demonstrated that HMGB1 migrated from the nucleus to the cytoplasm at the onset of necroptosis and was subsequently released passively to the extracellular matrix. Further experiments determined that the binding of HMGB1 with RIPK3 in the cytoplasm was loose during necroptosis. By contrast, when necroptosis was inhibited, the interaction in the cytoplasm was tight suggesting that this association between HMGB1 and RIPK3 might affect its occurrence. In conclusion, the transfer of HMGB1 from nucleus to cytoplasm, and its interaction with RIPK3 might be potentially involved in necroptosis.

Evaluation of Z-VAD-FMK as an anti-apoptotic drug to prevent granulosa cell apoptosis and follicular death after human ovarian tissue transplantation

Purpose: To evaluate the efficiency of ovarian tissue treatment with Z-VAD-FMK, a broad-spectrum caspase inhibitor, to prevent follicle loss induced by ischemia/reperfusion injury after transplantation.
Methods: In vitro, granulosa cells were exposed to hypoxic conditions, reproducing early ischemia after ovarian tissue transplantation, and treated with Z-VAD-FMK (50 μM). In vivo, cryopreserved human ovarian fragments (n = 39) were embedded in a collagen matrix containing or not Z-VAD-FMK (50 μM) and xenotransplanted on SCID mice ovaries for 3 days or 3 weeks.
Results: In vitro, Z-VAD-FMK maintained the metabolic activity of granulosa cells, reduced HGL5 cell death, and decreased PARP cleavage. In vivo, no improvement of follicular pool and global tissue preservation was observed with Z-VAD-FMK in ovarian tissue recovered 3-days post-grafting. Conversely, after 3 weeks of transplantation, the primary follicular density was higher in fragments treated with Z-VAD-FMK. This improvement was associated with a decreased percentage of apoptosis in the tissue.
Conclusions: In situ administration of Z-VAD-FMK slightly improves primary follicular preservation and reduces global apoptosis after 3 weeks of transplantation. Data presented herein will help to guide further researches towards a combined approach targeting multiple cell death pathways, angiogenesis stimulation, and follicular recruitment inhibition.

Caspase inhibitor z-VAD-FMK increases the survival of hair cells after Actinomycin-D-induced damage in vitro

Actinomycin-D (Act-D) is a highly effective chemotherapeutic agent that induces apoptosis in systemic tissues. Act-D combined with other chemotherapeutic agents exhibits ototoxic effects and causes hearing impairment. To investigate the potential toxic effects of Act-D in the inner ear, we treated cochlear organotypic cultures with varying concentrations of Act-D for different durations. For the first time, we found that Act-D specifically induced HC loss and apoptosis in a dose- and time-dependent manner but not neuronal degeneration. Co-treatment with benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-FMK), a pan cysteine protease inhibitor, significantly reduced HC loss and apoptosis induced by Act-D, indicating increased cell survival. Taken together, Act-D exposure has ototoxic effects on the auditory system, while z-VAD-FMK prevents Act-D-induced hair cell damage.