Home>>Lipids>> Endocannabinoid/Endocannabinoid-like>>URB754

URB754 Sale

(Synonyms: 6-甲基-2-[(4-甲基苯基)氨基]-4H-3,1-苯并嗪-4-酮) 目录号 : GC41599

A MAGL inhibitor

URB754 Chemical Structure

Cas No.:86672-58-4

规格 价格 库存 购买数量
5mg
¥479.00
现货
10mg
¥907.00
现货
50mg
¥3,838.00
现货
100mg
¥6,716.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

URB754 is a potent and noncompetitive inhibitor of monoacylglycerol lipase (MAGL), exhibiting an IC50 value of 200 nM for the recombinant rat brain enzyme. However, it does not inhibit human recombinant, rat brain, or mouse brain MAGL at concentrations up to 100 µM. There is evidence that the MAGL inhibitory activity of URB754 may be attributed to the impurity bis(methylthio)mercurane (IC50 = 11.9 nM for rat recombinant MAGL) that is found in commercial preparations. URB754 inhibits rat brain fatty acyl amide hydrolase (FAAH) with an IC50 value of 32 µM and binds weakly to the rat central cannabinoid (CB1) receptor with an IC50 value of 3.8 µM. It does not inhibit COX-1 or COX-2 at concentrations up to 100 µM. Inhibition of MAGL hydrolysis of 2-arachidonoyl glycerol (2-AG) is associated with enhanced stress-induced analgesia and may represent a novel drug target in pain and stress management.

Chemical Properties

Cas No. 86672-58-4 SDF
别名 6-甲基-2-[(4-甲基苯基)氨基]-4H-3,1-苯并嗪-4-酮
Canonical SMILES Cc1ccc(cc1)Nc1nc2ccc(C)cc2c(=O)o1
分子式 C16H14N2O2 分子量 266.3
溶解度 DMF: 20 mg/ml,DMSO: 10 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.7552 mL 18.7758 mL 37.5516 mL
5 mM 0.751 mL 3.7552 mL 7.5103 mL
10 mM 0.3755 mL 1.8776 mL 3.7552 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

URB754 has no effect on the hydrolysis or signaling capacity of 2-AG in the rat brain

Chem Biol 2006 Aug;13(8):811-4.PMID:16931330DOI:10.1016/j.chembiol.2006.07.008.

Previous studies indicate that in brain tissue the endocannabinoid 2-AG is inactivated by monoglyceride lipase (MGL)-catalyzed hydrolysis, and a recent report has indicated that MGL activity could be specifically inhibited by URB754 . In the present study, URB754 failed to inhibit 2-AG hydrolysis in rat brain preparations. In addition, brain cryosections were employed to assess whether URB754 could facilitate the detection of 2-AG-stimulated G protein activity. Nevertheless, whereas pretreatment with PMSF readily allowed detection of 2-AG-stimulated G protein activity, URB754 was ineffective. In contrast to previous claims, brain FAAH activity was also resistant to URB754. Thus, in our hands URB754 was not able to block the endocannabinoid-hydrolyzing enzymes and cannot serve as a lead structure for future development of MGL-specific inhibitors.

Identification of a bioactive impurity in a commercial sample of 6-methyl-2-p-tolylaminobenzo[d][1,3]oxazin-4-one (URB754)

Ann Chim 2007 Sep;97(9):887-94.PMID:17970304DOI:10.1002/adic.200790073.

The compound URB754 was recently identified as a potent inhibitor of the endocannabinoid-deactivating enzyme monoacylglycerol lipase (MGL) by screening of a commercial chemical library. Based on HPLC/MS, NMR and EI/MS analyses, the present paper shows that the MGL-inhibitory activity attributed to URB754 is in fact due to a chemical impurity present in the commercial sample, identified as bis(methylthio)mercurane. Although this organomercurial compound is highly potent at inhibiting MGL (IC50 = 11.9 +/- 1.1 nM), its biological use is prohibited by its toxicity and target promiscuity.

Lack of selectivity of URB602 for 2-oleoylglycerol compared to anandamide hydrolysis in vitro

Br J Pharmacol 2007 Jan;150(2):186-91.PMID:17143303DOI:10.1038/sj.bjp.0706971.

Background and purpose: Two compounds, URB602 and URB754, have been reported in the literature to be selective inhibitors of monoacylglycerol lipase, although a recent study has questioned their ability to prevent 2-arachidonoyl hydrolysis by brain homogenates and cerebellar membranes. In the present study, the ability of these compounds to inhibit monoacylglycerol lipase and fatty acid amide hydrolase has been reinvestigated. Experimental approach: Homogenates and cell lines were incubated with test compounds and, thereafter, with either [(3)H]-2-oleoylglycerol or [(3)H]-anandamide. Labelled reaction products were separated from substrate using chloroform: methanol extraction. Key results: In cytosolic fractions from rat brain, URB602 and URB754 inhibited the hydrolysis of 2-oleoylglycerol with IC(50) values of 25 and 48 microM, respectively. Anandamide hydrolysis by brain membranes was not sensitive to URB754, but was inhibited by URB602 (IC(50) value 17 microM). Hydrolysis of 2-oleoylglycerol by human recombinant monoacylglycerol lipase was sensitive to URB602, but not URB754. The lack of selectivity of URB602 for 2-oleoylglycerol compared to anandamide hydrolysis was also observed for intact RBL2H3 basophilic leukaemia cells. C6 glioma expressed mRNA for monoacylglycerol lipase, and hydrolyzed 2-oleoylglycerol in a manner sensitive to inhibition by methyl arachidonoyl fluorophosphonate but not URB754 or URB597. MC3T3-E1 mouse osteoblastic cells, which did not express mRNA for monoacylglycerol lipase, hydrolyzed 2-oleoylglycerol in the presence of URB597, but the hydrolysis was less sensitive to methyl arachidonoyl fluorophosphonate than for C6 cells. Conclusions and implications: The data demonstrate that the compounds URB602 and URB754 do not behave as selective and/or potent inhibitors of monoacylglycerol lipase.

Inhibition of 2-arachidonoylglycerol catabolism modulates vasoconstriction of rat middle cerebral artery by the thromboxane mimetic, U-46619

Br J Pharmacol 2007 Nov;152(5):691-8.PMID:17891162DOI:10.1038/sj.bjp.0707468.

Background and purpose: Cerebrovascular smooth muscle cells express the CB1 cannabinoid receptor and CB1 agonists produce vasodilatation of the middle cerebral artery (MCA). The thromboxane A2 mimetic, U-46619, increased the content of the endocannabinoid, 2-arachidonoylglycerol (2-AG) in the MCA and 2-AG moderated the vasoconstriction produced by U46619 in this tissue. The purposes of this study were to examine the extent to which 2-AG is catabolized by cerebral arteries and to determine whether blockade of 2-AG inactivation potentiates its feedback inhibition of U-44619-mediated vasoconstriction. Experimental approach: The diameters of isolated, perfused MCA from male rats were measured using videomicroscopy. Key results: Exogenous 2-AG produces a CB1 receptor-dependent and concentration-related increase in the diameter of MCA constricted with 5-HT. The E (max) for 2-AG dilation is increased 4-fold in the presence of the metabolic inhibitors 3-(decylthio)-1,1,1-trifluropropan-2-one (DETFP), URB754 and URB597. To examine the role of catabolism in the effects of endogenous 2-AG, vasoconstriction induced by U-46619 was studied. DETFP and URB754, but not the fatty acid amide hydrolase inhibitor, URB597, significantly increased the EC(50) for U-46619. These data support a physiological role for endocannabinoid feedback inhibition in the effects of U-46619 and indicate that endogenously produced 2-AG is also efficiently catabolized within the MCA. Conclusions and implications: MCA express mechanisms for the efficient inactivation of 2-AG, providing further support for an endocannabinoid feedback mechanism that opposes thromboxane-mediated vasoconstriction. These data suggest that potentiation of endogenously produced 2-AG could be a novel therapeutic approach to the treatment of thrombotic stroke.