Home>>Signaling Pathways>> Apoptosis>> RIP kinase>>RIPA-56

RIPA-56 Sale

目录号 : GC31652

A RIPK1 inhibitor

RIPA-56 Chemical Structure

Cas No.:1956370-21-0

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥540.00
现货
10mg
¥491.00
现货
50mg
¥1,472.00
现货
100mg
¥2,365.00
现货
200mg
¥4,150.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Cell experiment:

Cell necrosis assay is performed in 96-well cell culture plate. 3,000 cells are plated in each well and cultured at 37°C overnight. HT-29 cells are treated with 20 ng/mL TNFα/100 nM Smac Mimetics/20 μM z-VAD-FMK and RIPA-56 for 24 h. L929 cells are treated with 20 ng/mL TNFα/20 μM z-VAD-FMK and RIPA-56 for 6 h. The cell survival ratio is determined using the Cell Titer-Glo Luminescent Cell Viability Assay kit[1].

Animal experiment:

Mice: Following intraveneous (IV), intraperitoneal (IP), or oral administration (PO) of RIPA-56 to C57BL/6 mice (n=3), blood is sampled through eye puncture at various time points. Compound concentrations in the plasma samples are analyzed by LCMS/MS. Pharmacokinetic parameters are determined from individual animal data using noncompartmental analysis in phoenix 64[1].

References:

[1]. Ren Y, et al. Discovery of a Highly Potent, Selective, and Metabolically Stable Inhibitor of Receptor-InteractingProtein 1 (RIP1) for the Treatment of Systemic Inflammatory Response Syndrome. J Med Chem. 2017 Feb 9;60(3):972-986.

产品描述

RIPA-56 is an inhibitor of receptor interacting serine/threonine kinase 1 (RIPK1; IC50 = 13 nM).1 It is selective for RIPK1 over RIPK3 at 10 ?M, as well as over a panel of additional kinases at 2 ?M. RIPA-56 inhibits Z-VAD-FMK-induced necrosis in HT-29 cells (EC50 = 28 nM). In vivo, RIPA-56 (6 mg/kg) reduces TNF-α-induced lethality and protects against TNF-α-induced organ damage in a mouse model of systemic inflammatory response syndrome (SIRS). It reduces spinal cord demyelination and breakdown of the blood-brain barrier (BBB) in a mouse model of experimental autoimmune encephalomyelitis (EAE).2 RIPA-56 (300 mg/kg) reduces hepatic inflammatory cell infiltration and fibrosis, as well as body weight gain and total fat mass, in a mouse model of high-fat diet-induced non-alcoholic steatohepatitis (NASH).3

1.Ren, Y., Su, Y., Sun, L., et al.Discovery of a highly potent, selective, and metabolically stable inhibitor of receptor-interacting protein 1 (RIP1) for the treatment of systemic inflammatory response syndromeJ. Med. Chem.60(3)972-986(2017) 2.Zhang, S., Su, Y., Ying, Z., et al.RIP1 kinase inhibitor halts the progression of an immune-induced demyelination disease at the stage of monocyte elevationProc. Natl. Acad. Sci. USA116(12)5675-5680(2019) 3.Majdi, A., Aoudjehane, L., Ratziu, V., et al.Inhibition of receptor-interacting protein kinase 1 improves experimental non-alcoholic fatty liver diseaseJ. Hepatol.72(4)627-635(2020)

Chemical Properties

Cas No. 1956370-21-0 SDF
Canonical SMILES CCC(C)(C)C(N(CC1=CC=CC=C1)O)=O
分子式 C13H19NO2 分子量 221.3
溶解度 DMSO : ≥ 100 mg/mL (451.88 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.5188 mL 22.5938 mL 45.1875 mL
5 mM 0.9038 mL 4.5188 mL 9.0375 mL
10 mM 0.4519 mL 2.2594 mL 4.5188 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Inhibition of receptor-interacting protein kinase 1 improves experimental non-alcoholic fatty liver disease

Background & aims: In non-alcoholic fatty liver disease (NAFLD), hepatocytes can undergo necroptosis: a regulated form of necrotic cell death mediated by the receptor-interacting protein kinase (RIPK) 1. Herein, we assessed the potential for RIPK1 and its downstream effector mixed lineage kinase domain-like protein (MLKL) to act as therapeutic targets and markers of activity in NAFLD. Methods: C57/BL6J-mice were fed a normal chow diet or a high-fat diet (HFD). The effect of RIPA-56, a highly specific inhibitor of RIPK1, was evaluated in HFD-fed mice and in primary human steatotic hepatocytes. RIPK1 and MLKL concentrations were measured in the serum of patients with NAFLD. Results: When used as either a prophylactic or curative treatment for HFD-fed mice, RIPA-56 caused a downregulation of MLKL and a reduction of liver injury, inflammation and fibrosis, characteristic of non-alcoholic steatohepatitis (NASH), as well as of steatosis. This latter effect was reproduced by treating primary human steatotic hepatocytes with RIPA-56 or necrosulfonamide, a specific inhibitor of human MLKL, and by knockout (KO) of Mlkl in fat-loaded AML-12 mouse hepatocytes. Mlkl-KO led to activation of mitochondrial respiration and an increase in β-oxidation in steatotic hepatocytes. Along with decreased MLKL activation, Ripk3-KO mice exhibited increased activities of the liver mitochondrial respiratory chain complexes in experimental NASH. In patients with NAFLD, serum concentrations of RIPK1 and MLKL increased in correlation with activity. Conclusion: The inhibition of RIPK1 improves NASH features in HFD-fed mice and reverses steatosis via an MLKL-dependent mechanism that, at least partly, involves an increase in mitochondrial respiration. RIPK1 and MLKL are potential serum markers of activity and promising therapeutic targets in NAFLD. Lay summary: There are currently no pharmacological treatment options for non-alcoholic fatty liver disease (NAFLD), which is now the most frequent liver disease. Necroptosis is a regulated process of cell death that can occur in hepatocytes during NAFLD. Herein, we show that RIPK1, a gatekeeper of the necroptosis pathway that is activated in NAFLD, can be inhibited by RIPA-56 to reduce not only liver injury, inflammation and fibrosis, but also steatosis in experimental models. These results highlight the potential of RIPK1 as a therapeutic target in NAFLD.

Inhibiting Necroptosis of Spermatogonial Stem Cell as a Novel Strategy for Male Fertility Preservation

Fertility preservation is a common concern for male cancer survivors of reproductive age. However, except for testicular tissue cryopreservation, which is not very effective, there is no feasible and precise therapy capable of protecting spermatogenesis for prepubertal boys before or during gonadotoxic treatment. This study aims to investigate the effects of inhibiting necroptosis of spermatogonial stem cell (SSC) in fertility preservation. Male mice 12 weeks of age were used to establish gonadotoxicity with two intraperitoneal injections of busulfan at a total dose of 40 mg kg-1. The mouse model and the primary cultured mouse SSCs were used to characterize the relationship between necroptosis of SSC and gonadotoxicity. Meanwhile, the effects of an inhibitor of necroptosis pathway, RIPA-56, were observed on day 36 in the mouse model of busulfan-induced gonadotoxicity. We found that the number of SSCs was decreased, but the level of necroptosis was upregulated on day 18 after busulfan treatment in testes from gonadotoxic mice. Further experiments in primary cultured cells showed that the necroptosis caused cell death in busulfan-treated SSCs and could be inhibited by RIPA-56. After suppressing the necroptosis of SSCs, the busulfan-induced mice had a decreased loss of spermatogenic cells as shown by histology and an increased Johnsen's score. Moreover, the quantities of SSCs and epididymal spermatozoa were restored after intervention with RIPA-56, indicating a series of beneficial effects by targeting the necroptosis of SSCs in mice undergoing busulfan treatment. In conclusion, our findings reveal that the necroptosis of SSCs plays a critical role in busulfan-induced gonadotoxicity and may be a potential target for male fertility preservation.

RIP1 kinase inhibitor halts the progression of an immune-induced demyelination disease at the stage of monocyte elevation

Demyelination in the central nervous system (CNS) underlies many human diseases, including multiple sclerosis (MS). We report here the findings of our study of the CNS demyelination process using immune-induced [experimental autoimmune encephalomyelitis (EAE)] and chemical-induced [cuprizone (CPZ)] mouse models of demyelination. We found that necroptosis, a receptor-interacting protein 3 (RIP3) kinase and its substrate mixed lineage kinase domain-like protein (MLKL)-dependent cell death program, played no role in the demyelination process, whereas the MLKL-dependent, RIP3-independent function of MLKL in the demyelination process initially discovered in the peripheral nervous system in response to nerve injury, also functions in demyelination in the CNS in these models. Moreover, a receptor-interacting protein 1 (RIP1) kinase inhibitor, RIPA-56, blocked disease progression in the EAE-induced model but showed no effect in the CPZ-induced model. It does so most likely at a step of monocyte elevation downstream of T cell activation and myelin-specific antibody generation, although upstream of breakdown of the blood-brain barrier. RIP1-kinase dead knock-in mice shared a similar result as mice treated with the RIP1 inhibitor. These results indicate that RIP1 kinase inhibitor is a potential therapeutic agent for immune-mediated demyelination diseases that works by prevention of monocyte elevation, a function previously unknown for RIP1 kinase.

Discovery of a Highly Potent, Selective, and Metabolically Stable Inhibitor of Receptor-Interacting Protein 1 (RIP1) for the Treatment of Systemic Inflammatory Response Syndrome

On the basis of its essential role in driving inflammation and disease pathology, cell necrosis has gradually been verified as a promising therapeutic target for treating atherosclerosis, systemic inflammatory response syndrome (SIRS), and ischemia injury, among other diseases. Most necrosis inhibitors targeting receptor-interacting protein 1 (RIP1) still require further optimization because of weak potency or poor metabolic stability. We conducted a phenotypic screen and identified a micromolar hit with novel amide structure. Medicinal chemistry efforts yielded a highly potent, selective, and metabolically stable drug candidate, compound 56 (RIPA-56). Biochemical studies and molecular docking revealed that RIP1 is the direct target of this new series of type III kinase inhibitors. In the SIRS mice disease model, 56 efficiently reduced tumor necrosis factor alpha (TNFα)-induced mortality and multiorgan damage. Compared to known RIP1 inhibitors, 56 is potent in both human and murine cells, is much more stable in vivo, and is efficacious in animal model studies.