Home>>Signaling Pathways>> Metabolism>> PPAR>>Raspberry ketone (Frambione)

Raspberry ketone (Frambione) Sale

(Synonyms: 覆盆子酮; Frambione; 4-(4-Hydroxyphenyl)-2-butanone) 目录号 : GC31396

Raspberry ketone (p-Hydroxybenzyl acetone, Frambinone, Oxyphenylon, Rheosmin, Rasketone) is a natural phenolic compound that is the primary aroma compound of red raspberries. Raspberry ketone shows cardioprotective action against isoproterenol-induced myocardial infarction in rats, and the effects may be due to its PPAR-α agonistic activity.

Raspberry ketone (Frambione) Chemical Structure

Cas No.:5471-51-2

规格 价格 库存 购买数量
100mg
¥446.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Cell experiment:

For the cytotoxicity study, 3T3-L1 pre-adipocytes are cultured and differentiated. After Raspberry ketone treatment for 4 d in DMEM containing 10% fetal bovine serum, the lactate dehydrogenase (LDH) concentration in the medium is immediately detected with the CytoTox 96 nonradioactive cytotoxicity assay kit[1].

Animal experiment:

During the experimental period, the animal room holds four rats per cage, with free access to water and food, under conditions of temperature controlled at 20-26°C, humidity at 40-70%, and a 12/12-h day-night light cycle. Rats are fed with normal diet for 1 week and then randomly divided into five groups: normal control (NC) group (n=8) fed normal diet for 8 weeks, the model control (MC) group (n=8) fed high-fat diet (82% standard diet, 8.3% yolk powder, 9.0% lard, 0.5% cholesterol, and 0.2% sodium taurocholate), the Raspberry ketone low-dose (RKL) group (n=8), the Raspberry ketone middle-dose (RKM) group (n=8), and the Raspberry ketone high-dose (RKH) group (n=8). Rats are first fed with high-fat diet for 4 weeks, and then these rats are given intragastrically 0.5%, 1%, or 2% Raspberry ketone. The first two groups of rats are intragastrically administered salad oil at the same dose (2 mL/day per rat) once a day at 10:00 a.m., lasting for 4 weeks[2].

References:

[1]. Park KS. Raspberry ketone, a naturally occurring phenolic compound, inhibits adipogenic and lipogenic gene expression in 3T3-L1 adipocytes. Pharm Biol. 2015 Jun;53(6):870-5.
[2]. Wang L, et al. Raspberry ketone protects rats fed high-fat diets against nonalcoholic steatohepatitis. J Med Food. 2012 May;15(5):495-503.
[3]. Khan V, et al. Raspberry ketone protects against isoproterenol-induced myocardial infarction in rats. Life Sci. 2018 Feb 1;194:205-212.

产品描述

Raspberry ketone (p-Hydroxybenzyl acetone, Frambinone, Oxyphenylon, Rheosmin, Rasketone) is a natural phenolic compound that is the primary aroma compound of red raspberries. Raspberry ketone shows cardioprotective action against isoproterenol-induced myocardial infarction in rats, and the effects may be due to its PPAR-α agonistic activity.

Chemical Properties

Cas No. 5471-51-2 SDF
别名 覆盆子酮; Frambione; 4-(4-Hydroxyphenyl)-2-butanone
Canonical SMILES CC(CCC1=CC=C(O)C=C1)=O
分子式 C10H12O2 分子量 164.2
溶解度 DMSO: 100 mg/mL (609.01 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 6.0901 mL 30.4507 mL 60.9013 mL
5 mM 1.218 mL 6.0901 mL 12.1803 mL
10 mM 0.609 mL 3.0451 mL 6.0901 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Potential metabolic activities of raspberry ketone

Novel food and food compounds interventions have attracted a lot of attention nowadays for the prevention and treatment of metabolic diseases. Raspberry ketone (RK) is aromatic compound found within red fruits and berries, has been used as an over-the-counter product for weight loss. However, actually, the effect of RK on weight loss is still controversial, and the mechanism is largely unknown. Besides, in vivo and in vitro studies have demonstrated the beneficial effect of RK on the development of other metabolic diseases. In this review, we comprehensively highlighted the synthesis, bioavailability, and metabolism of RK, and summarized the progress made in our understanding of the potential biological activities of RK, including antiobesity, antidiabetes, cardioprotection, and hepatoprotection, as well as their underlying mechanisms. This paper provides a critical overview about the current findings and proposes the future studies in the area of RK on human health. PRACTICAL APPLICATIONS: Raspberry ketone (RK) has been used for weight control for years, but this effect is controversial considering food intake. Additionally, RK is beneficial for T2DM, liver and heart injury. The underlying mechanisms of the protective effect of RK including accelerating fatty acid oxidation, balancing serum glucose level, anti-inflammation, antioxidant process, and so on. In this context, we provide a comprehensive analysis of the benefits of RK against many metabolic diseases and discuss the underlying molecular mechanisms. We hope our work will be helpful for further researches on RK and improve its public recognition.

Efficient bioconversion of raspberry ketone in Escherichia coli using fatty acids feedstocks

Background: Phenylpropanoid including raspberry ketone, is a kind of important natural plant product and widely used in pharmaceuticals, chemicals, cosmetics, and healthcare products. Bioproduction of phenylpropanoid in Escherichia coli and other microbial cell factories is an attractive approach considering the low phenylpropanoid contents in plants. However, it is usually difficult to produce high titer phenylpropanoid production when fermentation using glucose as carbon source. Developing novel bioprocess using alternative sources might provide a solution to this problem. In this study, typical phenylpropanoid raspberry ketone was used as the target product to develop a biosynthesis pathway for phenylpropanoid production from fatty acids, a promising alternative low-cost feedstock.
Results: A raspberry ketone biosynthesis module was developed and optimized by introducing 4-coumarate-CoA ligase (4CL), benzalacetone synthase (BAS), and raspberry ketone reductase (RZS) in Escherichia coli strains CR1-CR4. Then strain CR5 was developed by introducing raspberry ketone biosynthesis module into a fatty acids-utilization chassis FA09 to achieve production of raspberry ketone from fatty acids feedstock. However, the production of raspberry ketone was still limited by the low biomass and unable to substantiate whole-cell bioconversion process. Thus, a process by coordinately using fatty-acids and glycerol was developed. In addition, we systematically screened and optimized fatty acids-response promoters. The optimized promoter Pfrd3 was then successfully used for the efficient expression of key enzymes of raspberry ketone biosynthesis module during bioconversion from fatty acids. The final engineered strain CR8 could efficiently produce raspberry ketone repeatedly using bioconversion from fatty acids feedstock strategy, and was able to produce raspberry ketone to a concentration of 180.94 mg/L from soybean oil in a 1-L fermentation process.
Conclusion: Metabolically engineered Escherichia coli strains were successfully developed for raspberry ketone production from fatty acids using several strategies, including optimization of bioconversion process and fine-tuning key enzyme expression. This study provides an essential reference to establish the low-cost biological manufacture of phenylpropanoids compounds.

Pharmacological Exploration of Phenolic Compound: Raspberry Ketone-Update 2020

Raspberry ketone (RK) is an aromatic phenolic compound naturally occurring in red raspberries, kiwifruit, peaches, and apples and reported for its potential therapeutic and nutraceutical properties. Studies in cells and rodents have suggested an important role for RK in hepatic/cardio/gastric protection and as an anti-hyperlipidemic, anti-obesity, depigmentation, and sexual maturation agent. Raspberry ketone-mediated activation of peroxisome proliferator-activated receptor-α (PPAR-α) stands out as one of its main modes of action. Although rodent studies have demonstrated the efficacious effects of RK, its mechanism remains largely unknown. In spite of a lack of reliable human research, RK is marketed as a health supplement, at very high doses. In this review, we provide a compilation of scientific research that has been conducted so far, assessing the therapeutic properties of RK in several disease conditions as well as inspiring future research before RK can be considered safe and efficacious with limited side effects as an alternative to modern medicines in the treatment of major lifestyle-based diseases.

Glucose-Derived Raspberry Ketone Produced via Engineered Escherichia coli Metabolism

The demand for raspberry ketone (RK) as a plant-based natural flavoring agent is high, but natural RK is one of the most expensive flavor compounds due to its limited content in plants. Here, we produced RK de novo from simple carbon sources in Escherichia coli. We genetically engineered E. coli metabolism to overproduce the metabolic precursors tyrosine and p-coumaric acid and increase RK production. The engineered E. coli produced 19.3- and 1.9 g/L of tyrosine and p-coumaric acid from glucose, respectively. The p-coumaric acid CoA ligase from Agrobacterium tumefaciens and amino acid substituted benzalacetone synthase of Rhemu palmatum (Chinese rhubarb) were overexpressed in E. coli overproducing p-coumaric acid. The overexpression of fabF, encoding β-ketoacyl-acyl carrier protein synthetase II increased intracellular malonyl-CoA, the precursor of benzalacetone synthase for RK biosynthesis, and improved RK production. Fed-batch cultures given glucose as a carbon source produced 62 mg/L of RK under optimized conditions. Our production system is inexpensive and does not rely on plant extraction; thus, it should significantly contribute to the flavor and fragrance industries.

Potentials of Raspberry Ketone as a Natural Antioxidant

Oxidative stress is closely linked to various diseases, and many studies have been conducted to determine how to reduce this stress. In particular, efforts are being made to find potential antioxidants from natural products. Studies have shown that raspberry ketone (RK; 4-(4-hydroxyphenyl)-2-butanone) has various pharmacological activities. This review summarizes the antioxidant activities of RK and their underlying mechanisms. In several experimental models, it was proven that RK exhibits antioxidant properties through increasing total antioxidant capacity (TAC); upregulating antioxidant enzymes, such as superoxide dismutase (SOD) and catalase (CAT); and improving lipid peroxidation. In conclusion, research about RK's antioxidant activities is directly or indirectly related to its other various physiological activities. Further studies at the clinical level will be able to verify the value of RK as an effective antioxidant, functional health food, and therapeutic agent.