Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>p-Anisic acid

p-Anisic acid Sale

(Synonyms: 对甲氧基苯甲酸,4-Methoxybenzoic acid; Draconic acid) 目录号 : GC39418

p-Anisic acid (4-Methoxybenzoic acid) 是anisic acid 的一个异构体,具有抗菌和防腐活性。

p-Anisic acid Chemical Structure

Cas No.:100-09-4

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥427.00
现货
100mg
¥385.00
现货
5g
¥420.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

p-Anisic acid (4-Methoxybenzoic acid) is one of the isomers of anisic acid, with anti-bacterial and antiseptic properties[1].

[1]. DeWeerd K, et al. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria. Appl Environ Microbiol. 1988 May;54(5):1237-42.

Chemical Properties

Cas No. 100-09-4 SDF
别名 对甲氧基苯甲酸,4-Methoxybenzoic acid; Draconic acid
Canonical SMILES O=C(O)C1=CC=C(OC)C=C1
分子式 C8H8O3 分子量 152.15
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 6.5725 mL 32.8623 mL 65.7246 mL
5 mM 1.3145 mL 6.5725 mL 13.1449 mL
10 mM 0.6572 mL 3.2862 mL 6.5725 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Bioactive (Co)oligoesters as Potential Delivery Systems of p-Anisic acid for Cosmetic Purposes

Materials (Basel) 2020 Sep 18;13(18):4153.PMID:32961952DOI:10.3390/ma13184153.

This article reports the studies on bioactive (co)oligoesters towards their use as controlled delivery systems of p-Anisic acid. The objects of the study were oligo[3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate], (p-AA-CH2-HP)n oligoester, and oligo[(3-hydroxy-3-(4-methoxybenzoyloxymethyl)propionate)-co-(3-hydroxybutyrate)] [(p-AA-CH2-HP)x-co-(HB)y (co)oligoesters containing p-Anisic acid moiety (p-AA, as the bioactive end and side groups) connected to the polymer backbone through the susceptible to hydrolysis ester bonds. A thorough insight into the hydrolysis process of the bioactive (co)oligoesters studied has allowed us to determine the release profile of p-AA as well as to identify polymer carrier degradation products. The p-AA release profiles determined on the basis of high-performance liquid chromatography (HPLC) measurements showed that the release of the bioactive compound from the developed (co)oligoester systems was regular and no burst effect occurred. Biological studies demonstrated that studied (homo)- and (co)oligoesters were well tolerated by HaCaT cells because none of them showed notable cytotoxicity. They promoted keratinocyte growth at moderate concentrations. Bioactive (co)oligoesters containing p-Anisic acid moiety had somewhat decreased cell proliferation at the highest concentration (100 µg/mL). The important practical inference of the current study is that the (co)oligoesters developed have a relatively large load of the biologically active substance (p-AA) per polymer macromolecule, which unlocks their potential application in the cosmetic industry.

The Response Surface Optimization of Supercritical CO2 Modified with Ethanol Extraction of p-Anisic acid from Acacia mearnsii Flowers and Mathematical Modeling of the Mass Transfer

Molecules 2022 Jan 31;27(3):970.PMID:35164235DOI:10.3390/molecules27030970.

A widely disseminated native species from Australia, Acacia mearnsii, which is mainly cultivated in Brazil and South Africa, represents a rich source of natural tannins used in the tanning process. Many flowers of the Acacia species are used as sources of compounds of interest for the cosmetic industry, such as phenolic compounds. In this study, supercritical fluid extraction was used to obtain non-volatile compounds from A. mearnsii flowers for the first time. The extract showed antimicrobial activity and the presence of p-Anisic acid, a substance with industrial and pharmaceutical applications. The fractionation of the extract was performed using a chromatographic column and the fraction containing p-Anisic acid presented better minimum inhibitory concentration (MIC) results than the crude extract. Thus, the extraction process was optimized to maximize the p-Anisic acid extraction. The response surface methodology and the Box-Behnken design was used to evaluate the pressure, temperature, the cosolvent, and the influence of the particle size on the extraction process. After the optimization process, the p-Anisic acid yield was 2.51% w/w and the extraction curve was plotted as a function of time. The simulation of the extraction process was performed using the three models available in the literature.

Production of Protocatechuic Acid from p-Hydroxyphenyl (H) Units and Related Aromatic Compounds Using an Aspergillus niger Cell Factory

mBio 2021 Jun 29;12(3):e0039121.PMID:34154420DOI:10.1128/mBio.00391-21.

Protocatechuic acid (3,4-dihydroxybenzoic acid) is a chemical building block for polymers and plastics. In addition, protocatechuic acid has many properties of great pharmaceutical interest. Much research has been performed in creating bacterial protocatechuic acid production strains, but no protocatechuic acid-producing fungal cell factories have been described. The filamentous fungus Aspergillus niger can produce protocatechuic acid as an intermediate of the benzoic acid metabolic pathway. Recently, the p-hydroxybenzoate-m-hydroxylase (phhA) and protocatechuate 3,4-dioxygenase (prcA) of A. niger have been identified. It has been shown that the prcA deletion mutant is still able to grow on protocatechuic acid. This led to the identification of an alternative pathway that converts protocatechuic acid to hydroxyquinol (1,3,4-trihydroxybenzene). However, the gene involved in the hydroxylation of protocatechuic acid to hydroxyquinol remained unidentified. Here, we describe the identification of protocatechuate hydroxylase (decarboxylating) (PhyA) by using whole-genome transcriptome data. The identification of phyA enabled the creation of a fungal cell factory that is able to accumulate protocatechuic acid from benzyl alcohol, benzaldehyde, benzoic acid, caffeic acid, cinnamic acid, cinnamyl alcohol, m-hydroxybenzoic acid, p-hydroxybenzyl alcohol, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, p-anisyl alcohol, p-anisaldehyde, p-Anisic acid, p-coumaric acid, and protocatechuic aldehyde. IMPORTANCE Aromatic compounds have broad applications and are used in many industries, such as the cosmetic, food, fragrance, paint, plastic, pharmaceutical, and polymer industries. The majority of aromatic compounds are synthesized from fossil sources, which are becoming limited. Plant biomass is the most abundant renewable resource on Earth and can be utilized to produce chemical building blocks, fuels, and bioplastics through fermentations with genetically modified microorganisms. Therefore, knowledge about the metabolic pathways and the genes and enzymes involved is essential to create efficient strategies for producing valuable aromatic compounds such as protocatechuic acid. Protocatechuic acid has many pharmaceutical properties but also can be used as a chemical building block to produce polymers and plastics. Here, we show that the fungus Aspergillus niger can be engineered to produce protocatechuic acid from plant-derived aromatic compounds and contributes to creating alternative methods for the production of platform chemicals. .

Crystal structures of the free and anisic acid bound triple mutant of phospholipase A2

J Mol Biol 2003 Oct 17;333(2):367-76.PMID:14529623DOI:10.1016/j.jmb.2003.08.032.

Phospholipase A2 catalyses the hydrolysis of the ester bond of 3-sn-phosphoglycerides. Here, we report the crystal structures of the free and anisic acid-bound triple mutant (K53,56,120M) of bovine pancreatic phospholipase A2. In the bound triple mutant structure, the small organic molecule p-Anisic acid is found in the active site, and one of the carboxylate oxygen atoms is coordinated to the functionally important primary calcium ion. The other carboxylate oxygen atom is hydrogen bonded to the phenolic hydroxyl group of Tyr69. In addition, the bound anisic acid molecule replaces one of the functionally important water molecules in the active site. The residues 60-70, which are in a loop (surface loop), are disordered in most of the bovine pancreatic phospholipase A2 structures. It is interesting to note that these residues are ordered in the bound triple mutant structure but are disordered in the free triple mutant structure. The organic crystallization ingredient 2-methyl-2,4-pentanediol is found near the active site of the free triple mutant structure. The overall tertiary folding and stereochemical parameters for the final models of the free and anisic acid-bound triple mutant are virtually identical.

Lysophosphatidylcholine Containing Anisic Acid Is Able to Stimulate Insulin Secretion Targeting G Protein Coupled Receptors

Nutrients 2020 Apr 22;12(4):1173.PMID:32331428DOI:10.3390/nu12041173.

Diabetes mellitus is a worldwide health problem with high rates of mortality and morbidity. Management of diabetes mellitus by dietary components is achievable especially at the initial stage of the disease. Several studies confirmed the antidiabetic activities of simple phenolic acids and lysophosphatidylcholine (LPC). The main goal of this study was to identify new potential insulin secretion modulators obtained by combining the structures of two natural compounds, namely O-methyl derivatives of phenolic acids and phospholipids. LPC and phosphatidylcholine bearing methoxylated aromatic carboxylic acids were tested as potential agents able to improve glucose-stimulated insulin secretion (GSIS) and intracellular calcium mobilization in MIN6 β pancreatic cell line. Our results show that LPC with covalently bonded molecule of p-Anisic acid at the sn-1 position was able to induce GSIS and intracellular calcium flux. Notably, 1-anisoyl-2-hydroxy-sn-glycero-3-phosphocholine did not affect the viability of MIN6 cells, suggesting its potential safe use. Furthermore, we have shown that three G protein coupled receptors, namely GPR40, GPR55, and GPR119, are targeted by this LPC derivative.