Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>Orotidine

Orotidine Sale

(Synonyms: 乳清酸核苷) 目录号 : GC30618

A pyrimidine nucleoside

Orotidine Chemical Structure

Cas No.:314-50-1

规格 价格 库存 购买数量
1 mg
¥3,555.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

102

客户使用产品发表文献 1

产品文档

Quality Control & SDS

View current batch:

产品描述

Orotidine is a pyrimidine nucleoside composed of ribose and orotic acid.1 Urine levels of orotidine are increased in rats following administration of the xanthine oxidase inhibitor allopurinol .2

1.Berg, J.M., Tymoczko, J.L., and Stryer, L.Nucleotide biosynthesisBiochemistry(2002) 2.Brown, G.K., Fox, R.M., and O'Sullivan, W.J.Alteration of quaternary structural behaviour of an hepatic orotate phosphoribosyltransferase-orotidine-5'-phosphate decarboxylase complex in rats following allopurinol therapyBiochem. Pharmacol.21(18)2469-2477(1972)

Chemical Properties

Cas No. 314-50-1 SDF
别名 乳清酸核苷
Canonical SMILES O=C(C(N([C@H]1[C@@H]([C@@H]([C@@H](CO)O1)O)O)C2=O)=CC(N2)=O)O
分子式 C10H12N2O8 分子量 288.21
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.4697 mL 17.3485 mL 34.6969 mL
5 mM 0.6939 mL 3.4697 mL 6.9394 mL
10 mM 0.347 mL 1.7348 mL 3.4697 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Orotidine Monophosphate Decarboxylase--A Fascinating Workhorse Enzyme with Therapeutic Potential

Orotidine 5'-monophosphate decarboxylase (ODCase) is known as one of the most proficient enzymes. The enzyme catalyzes the last reaction step of the de novo pyrimidine biosynthesis, the conversion from orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate. The enzyme is found in all three domains of life, Bacteria, Eukarya and Archaea. Multiple sequence alignment of 750 putative ODCase sequences resulted in five distinct groups. While the universally conserved DxKxxDx motif is present in all the groups, depending on the groups, several characteristic motifs and residues can be identified. Over 200 crystal structures of ODCases have been determined so far. The structures, together with biochemical assays and computational studies, elucidated that ODCase utilized both transition state stabilization and substrate distortion to accelerate the decarboxylation of its natural substrate. Stabilization of the vinyl anion intermediate by a conserved lysine residue at the catalytic site is considered the largest contributing factor to catalysis, while bending of the carboxyl group from the plane of the aromatic pyrimidine ring of OMP accounts for substrate distortion. A number of crystal structures of ODCases complexed with potential drug candidate molecules have also been determined, including with 6-iodo-uridine, a potential antimalarial agent.

Serum Orotidine: A Novel Biomarker of Increased CVD Risk in Type 2 Diabetes Discovered Through Metabolomics Studies

Objective: To identify novel biomarkers of cardiovascular disease (CVD) risk in type 2 diabetes (T2D) via a hypothesis-free global metabolomics study, while taking into account renal function, an important confounder often overlooked in previous metabolomics studies of CVD.
Research design and methods: We conducted a global serum metabolomics analysis using the Metabolon platform in a discovery set from the Joslin Kidney Study having a nested case-control design comprising 409 individuals with T2D. Logistic regression was applied to evaluate the association between incident CVD events and each of the 671 metabolites detected by the Metabolon platform, before and after adjustment for renal function and other CVD risk factors. Significant metabolites were followed up with absolute quantification assays in a validation set from the Joslin Heart Study including 599 individuals with T2D with and without clinical evidence of significant coronary heart disease (CHD).
Results: In the discovery set, serum orotidine and 2-piperidinone were significantly associated with increased odds of incident CVD after adjustment for glomerular filtration rate (GFR) (odds ratio [OR] per SD increment 1.94 [95% CI 1.39-2.72], P = 0.0001, and 1.62 [1.26-2.08], P = 0.0001, respectively). Orotidine was also associated with increased odds of CHD in the validation set (OR 1.39 [1.11-1.75]), while 2-piperidinone did not replicate. Furthermore, orotidine, being inversely associated with GFR, mediated 60% of the effects of declining renal function on CVD risk. Addition of orotidine to established clinical predictors improved (P < 0.05) C statistics and discrimination indices for CVD risk (ΔAUC 0.053, rIDI 0.48, NRI 0.42) compared with the clinical predictors alone.
Conclusions: Through a robust metabolomics approach, with independent validation, we have discovered serum orotidine as a novel biomarker of increased odds of CVD in T2D, independent of renal function. Additionally, orotidine may be a biological mediator of the increased CVD risk associated with poor kidney function and may help improve CVD risk prediction in T2D.

Protein-Ribofuranosyl Interactions Activate Orotidine 5'-Monophosphate Decarboxylase for Catalysis

The role of a global, substrate-driven, enzyme conformational change in enabling the extraordinarily large rate acceleration for orotidine 5'-monophosphate decarboxylase (OMPDC)-catalyzed decarboxylation of orotidine 5'-monophosphate (OMP) is examined in experiments that focus on the interactions between OMPDC and the ribosyl hydroxyl groups of OMP. The D37 and T100' side chains of OMPDC interact, respectively, with the C-3' and C-2' hydroxyl groups of enzyme-bound OMP. D37G and T100'A substitutions result in 1.4 kcal/mol increases in the activation barrier ΔG? for catalysis of decarboxylation of the phosphodianion-truncated substrate 1-(β-d-erythrofuranosyl)orotic acid (EO) but result in larger 2.1-2.9 kcal/mol increases in ΔG? for decarboxylation of OMP and for phosphite dianion-activated decarboxylation of EO. This shows that these substitutions reduce transition-state stabilization by the Q215, Y217, and R235 side chains at the dianion binding site. The D37G and T100'A substitutions result in <1.0 kcal/mol increases in ΔG? for activation of OMPDC-catalyzed decarboxylation of the phosphoribofuranosyl-truncated substrate FO by phosphite dianions. Experiments to probe the effect of D37 and T100' substitutions on the kinetic parameters for d-glycerol 3-phosphate and d-erythritol 4-phosphate activators of OMPDC-catalyzed decarboxylation of FO show that ΔG? for sugar phosphate-activated reactions is increased by ca. 2.5 kcal/mol for each -OH interaction eliminated by D37G or T100'A substitutions. We conclude that the interactions between the D37 and T100' side chains and ribosyl or ribosyl-like hydroxyl groups are utilized to activate OMPDC for catalysis of decarboxylation of OMP, EO, and FO.

Inhibition of orotidine 5'-monophosphate decarboxylase and its therapeutic potential

Orotidine 5'-monophosphate decarboxylase (ODCase) is among the most proficient enzymes, and catalyzes the decarboxylation of OMP to UMP. An overview of ODCase and various proposals for its catalytic mechanism of decarboxylation are briefly presented here. A number of inhibitors of ODCase and new developments in the X-ray structures of ODCases from different species are discussed in the context of their therapeutic potential against cancer and infectious diseases. Latest discoveries in the inhibition of ODCase, for example using the novel C6 substitutions on the uridine, open new doors for drug discovery targeting parasitic diseases such as malaria.

Catalysis by enzyme conformational change as illustrated by orotidine 5'-monophosphate decarboxylase

An energy decomposition scheme has been used to elucidate the importance of the changes of enzyme conformational substates to the reduction of the activation barrier in enzyme-catalyzed reactions. This analysis may be illustrated by the reaction of orotidine 5'-monophosphate decarboxylase, which exhibits a remarkable rate enhancement of over 17 orders of magnitude compared to the uncatalyzed process. The mechanism shows that the enzyme conformation is more distorted in the reactant state than in the transition state. The energy released from protein conformation relaxation provides the predominant contribution to the rate enhancement of orotidine 5'-monophosphate decarboxylase. The proposed mechanism is consistent with results from site-directed mutagenesis experiments, in which mutations distant from the reactive center can have significant effects on the catalytic rate enhancement (k(cat)), but rather a small influence on the binding affinity for the substrate (K(M)).