Home>>Signaling Pathways>> Proteases>> Mitochondrial Metabolism>>MitoPerOx

MitoPerOx

目录号 : GC44203

A ratiometric fluorescent probe for mitochondrial lipid peroxidation

MitoPerOx Chemical Structure

Cas No.:1392820-50-6

规格 价格 库存 购买数量
1mg
¥7,966.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

MitoPerOx is a ratiometric fluorescent probe that can be used to assess changes in lipid peroxidation within mitochondria. It is composed of a BODIPY fluorophore conjugated via a dienyl link to a triphenylphosphonium cation component that drives its accumulation in mitochondria. MitoPerOx displays an excitation maximum of 495 nm and exhibits a shift in emission maxima from 590 to 520 nm upon mitochondrial lipid peroxidation, enabling determination of ratiometric measurements of lipid peroxidation in live cells.

Chemical Properties

Cas No. 1392820-50-6 SDF
Canonical SMILES O=C(NCC[P+](C1=CC=CC=C1)(C2=CC=CC=C2)C3=CC=CC=C3)CCC4=CC=C5N4B(F)(F)[N]6=C(/C=C/C=C/C7=CC=CC=C7)C=CC6=C5.[Br-]
分子式 C42H38BF2N3OP•Br 分子量 760.5
溶解度 DMSO: 25 mM 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.3149 mL 6.5746 mL 13.1492 mL
5 mM 0.263 mL 1.3149 mL 2.6298 mL
10 mM 0.1315 mL 0.6575 mL 1.3149 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

A ratiometric fluorescent probe for assessing mitochondrial phospholipid peroxidation within living cells

Free Radic Biol Med 2012 Aug 1;53(3):544-53.PMID:22659314DOI:10.1016/j.freeradbiomed.2012.05.033.

Mitochondrial oxidative damage contributes to a wide range of pathologies, and lipid peroxidation of the mitochondrial inner membrane is a major component of this disruption. However, despite its importance, there are no methods to assess mitochondrial lipid peroxidation within cells specifically. To address this unmet need we have developed a ratiometric, fluorescent, mitochondria-targeted lipid peroxidation probe, MitoPerOx. This compound is derived from the C11-BODIPY(581/591) probe, which contains a boron dipyromethane difluoride (BODIPY) fluorophore conjugated via a dienyl link to a phenyl group. In response to lipid peroxidation the fluorescence emission maximum shifts from ∼590 to ∼520nm. To target this probe to the matrix-facing surface of the mitochondrial inner membrane we attached a triphenylphosphonium lipophilic cation, which leads to its selective uptake into mitochondria in cells, driven by the mitochondrial membrane potential. Here we report on the development and characterization of MitoPerOx. We found that MitoPerOx was taken up very rapidly into mitochondria within cells, where it responded to changes in mitochondrial lipid peroxidation that could be measured by fluorimetry, confocal microscopy, and epifluorescence live cell imaging. Importantly, the peroxidation-sensitive change in fluorescence at 520nm relative to that at 590nm enabled the use of the probe as a ratiometric fluorescent probe, greatly facilitating assessment of mitochondrial lipid peroxidation in cells.

Induction of Mitochondrial Reactive Oxygen Species Production by Itraconazole, Terbinafine, and Amphotericin B as a Mode of Action against Aspergillus fumigatus

Antimicrob Agents Chemother 2017 Oct 24;61(11):e00978-17.PMID:28848005DOI:10.1128/AAC.00978-17.

Drug resistance in fungal pathogens is of incredible importance to global health, yet the mechanisms of drug action remain only loosely defined. Antifungal compounds have been shown to trigger the intracellular accumulation of reactive oxygen species (ROS) in human-pathogenic yeasts, but the source of those ROS remained unknown. In the present study, we examined the role of endogenous ROS for the antifungal activity of the three different antifungal substances itraconazole, terbinafine, and amphotericin B, which all target the fungal cell membrane. All three antifungals had an impact on fungal redox homeostasis by causing increased intracellular ROS production. Interestingly, the elevated ROS levels induced by antifungals were abolished by inhibition of the mitochondrial respiratory complex I with rotenone. Further, evaluation of lipid peroxidation using the thiobarbituric acid assay revealed that rotenone pretreatment decreased ROS-induced lipid peroxidation during incubation of Aspergillus fumigatus with itraconazole and terbinafine. By applying the mitochondrion-specific lipid peroxidation probe MitoPerOx, we also confirmed that ROS are induced in mitochondria and subsequently cause significant oxidation of mitochondrial membrane in the presence of terbinafine and amphotericin B. To summarize, our study suggests that the induction of ROS production contributes to the ability of antifungal compounds to inhibit fungal growth. Moreover, mitochondrial complex I is the main source of deleterious ROS production in A. fumigatus challenged with antifungal compounds.

Complex I and complex III inhibition specifically increase cytosolic hydrogen peroxide levels without inducing oxidative stress in HEK293 cells

Redox Biol 2015 Dec;6:607-616.PMID:26516986DOI:10.1016/j.redox.2015.09.003.

Inhibitor studies with isolated mitochondria demonstrated that complex I (CI) and III (CIII) of the electron transport chain (ETC) can act as relevant sources of mitochondrial reactive oxygen species (ROS). Here we studied ROS generation and oxidative stress induction during chronic (24h) inhibition of CI and CIII using rotenone (ROT) and antimycin A (AA), respectively, in intact HEK293 cells. Both inhibitors stimulated oxidation of the ROS sensor hydroethidine (HEt) and increased mitochondrial NAD(P)H levels without major effects on cell viability. Integrated analysis of cells stably expressing cytosolic- or mitochondria-targeted variants of the reporter molecules HyPer (H2O2-sensitive and pH-sensitive) and SypHer (H2O2-insensitive and pH-sensitive), revealed that CI- and CIII inhibition increased cytosolic but not mitochondrial H2O2 levels. Total and mitochondria-specific lipid peroxidation was not increased in the inhibited cells as reported by the C11-BODIPY(581/591) and MitoPerOx biosensors. Also expression of the superoxide-detoxifying enzymes CuZnSOD (cytosolic) and MnSOD (mitochondrial) was not affected. Oxyblot analysis revealed that protein carbonylation was not stimulated by CI and CIII inhibition. Our findings suggest that chronic inhibition of CI and CIII: (i) increases the levels of HEt-oxidizing ROS and (ii) specifically elevates cytosolic but not mitochondrial H2O2 levels, (iii) does not induce oxidative stress or substantial cell death. We conclude that the increased ROS levels are below the stress-inducing level and might play a role in redox signaling.