Home>>Signaling Pathways>> DNA Damage/DNA Repair>> Nucleoside Antimetabolite/Analogue>>Isocytosine

Isocytosine Sale

(Synonyms: 异胞嘧啶) 目录号 : GC30554

Isocytosine (2-aminouracil) is an isomer of cytosine used in physical chemical studies involving metal complex binding, hydrogen-bonding, and tautomerism and proton transfer effects in nucleobases.

Isocytosine Chemical Structure

Cas No.:108-53-2

规格 价格 库存 购买数量
100mg
¥446.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Isocytosine (2-aminouracil) is an isomer of cytosine used in physical chemical studies involving metal complex binding, hydrogen-bonding, and tautomerism and proton transfer effects in nucleobases.

Chemical Properties

Cas No. 108-53-2 SDF
别名 异胞嘧啶
Canonical SMILES Nc1nc(=O)cc[nH]1
分子式 C4H5N3O 分子量 111.1
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 9.0009 mL 45.0045 mL 90.009 mL
5 mM 1.8002 mL 9.0009 mL 18.0018 mL
10 mM 0.9001 mL 4.5005 mL 9.0009 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Modelling Photoionisation in Isocytosine: Potential Formation of Longer-Lived Excited State Cations in its Keto Form

Studying the effects of UV and VUV radiation on non-canonical DNA/RNA nucleobases allows us to compare how they release excess energy following absorption with respect to their canonical counterparts. This has attracted much research attention in recent years because of its likely influence on the origin of our genetic lexicon in prebiotic times. Here we present a CASSCF and XMS-CASPT2 theoretical study of the photoionisation of non-canonical pyrimidine nucleobase isocytosine in both its keto and enol tautomeric forms. We analyse their lowest energy cationic excited states including 2π+ , 2nO+ and 2nN+ and compare these to the corresponding electronic states in cytosine. Investigating lower-energy decay pathways we find - unexpectedly - that keto-isocytosine+ presents a sizeable energy barrier potentially inhibiting decay to its cationic ground state, whereas enol-isocytosine+ features a barrierless and consequently ultrafast pathway analogous to the one previously found for the canonical (keto) form of cytosine+ . Dynamic electron correlation reduces the energy barrier in the keto form substantially (by ?1 eV) but it is nevertheless still present. We additionally compute the UV/Vis absorption signals of the structures encountered along these decay channels to provide spectroscopic fingerprints to assist future experiments in monitoring these intricate photo-processes.

Pd-Catalyzed Ring-Opening/Arylation/Cyclization of 2-Aminothiazole Derivatives Provides Modular Access to Isocytosine Analogues

We report a Pd-catalyzed ring-opening/arylation/cyclization reaction sequence between 2-aminothiazoles and aryl (pseudo)halides that provides modular access to isocytosine analogues. The scope of the reaction is broad with respect to both coupling partners and a robustness test demonstrated the functional group tolerance of the methodology. Visual kinetic analysis revealed that the product may inhibit catalyst turnover for some substrates.

Isocytosine deaminase Vcz as a novel tool for the prodrug cancer therapy

Background: The cytosine deaminase (CD)/5-fluorocytosine (5-FC) system is among the best explored enzyme/prodrug systems in the field of the suicide gene therapy. Recently, by the screening of the environmental metagenomic libraries we identified a novel isocytosine deaminase (ICD), termed Vcz, which is able of specifically converting a prodrug 5-fluoroisocytosine (5-FIC) into toxic drug 5-fluorouracil (5-FU). The aim of this study is to test the applicability of the ICD Vcz / 5-FIC pair as a potential suicide gene therapy tool.
Methods: Vcz-expressing human glioblastoma U87 and epithelial colorectal adenocarcinoma Caco-2 cells were treated with 5-FIC, and the Vcz-mediated cytotoxicity was evaluated by performing an MTT assay. In order to examine anti-tumor effects of the Vcz/5-FIC system in vivo, murine bone marrow-derived mesenchymal stem cells (MSC) were transduced with the Vcz-coding lentivirus and co-injected with 5-FIC or control reagents into subcutaneous GL261 tumors evoked in C57/BL6 mice.
Results: 5-FIC alone showed no significant toxic effects on U87 and Caco-2 cells at 100 μM concentration, whereas the number of cells of both cell lines that express Vcz cytosine deaminase gene decreased by approximately 60% in the presence of 5-FIC. The cytotoxic effects on cells were also induced by media collected from Vcz-expressing cells pre-treated with 5-FIC. The co-injection of the Vcz-transduced mesenchymal stem cells and 5-FIC have been shown to augment tumor necrosis and increase longevity of tumorized mice by 50% in comparison with control group animals.
Conclusions: We have confirmed that the novel ICD Vcz together with the non-toxic prodrug 5-FIC has a potential of being a new enzyme/prodrug system for suicide gene therapy.

Molecular Docking Studies on Isocytosine Analogues as Xanthine Oxidase Inhibitors

Flexible docking simulations were carried out on a series of isocytosine analogs as xanthine oxidase (XO) inhibitors. This was done by analysing the interaction of these compounds at the active site of XO. The binding free energies of the analogs were calculated using GoldScore. The binding modes of the best-fit conformation were studied, providing some handy important interactions. The results obtained henceforth provided an insight into the pharmacophoric structural requirements for XO inhibition for this class of molecules.

Modelling Photoionisation in Isocytosine: Potential Formation of Longer-Lived Excited State Cations in its Keto Form

The front cover artwork is provided by Dr. Javier Segarra-Martí (University of Valencia, Spain) and Prof. Michael J. Bearpark (Imperial College London, UK). The image shows the ultrafast photoionisation of DNA canonical nucleobase cytosine and the slower ionization process in non-canonical base isocytosine embedded within a DNA backbone. Read the full text of the Article at 10.1002/cphc.202100402.