Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>(2R,3R)-2,3-Dihydroxysuccinic acid

(2R,3R)-2,3-Dihydroxysuccinic acid Sale

(Synonyms: L-酒石酸; L-(+)-Tartaric acid) 目录号 : GC38265

Tartaric acid (2,3-Dihydroxysuccinic acid, Threaric acid, Racemic acid, Uvic acid, Paratartaric acid, Winestone) is a white crystalline organic acid that occurs naturally in many plants, most notably in grapes. It has several applications for industrial and pharmaceutical use.

(2R,3R)-2,3-Dihydroxysuccinic acid Chemical Structure

Cas No.:87-69-4

规格 价格 库存 购买数量
100mg
¥450.00
现货
200mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Tartaric acid (2,3-Dihydroxysuccinic acid, Threaric acid, Racemic acid, Uvic acid, Paratartaric acid, Winestone) is a white crystalline organic acid that occurs naturally in many plants, most notably in grapes. It has several applications for industrial and pharmaceutical use.

Chemical Properties

Cas No. 87-69-4 SDF
别名 L-酒石酸; L-(+)-Tartaric acid
Canonical SMILES O=C(O)[C@H](O)[C@@H](O)C(O)=O
分子式 C4H6O6 分子量 150.09
溶解度 DMSO : 30mg/mL 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 6.6627 mL 33.3133 mL 66.6267 mL
5 mM 1.3325 mL 6.6627 mL 13.3253 mL
10 mM 0.6663 mL 3.3313 mL 6.6627 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Characterization of a (2R,3R)-2,3-Butanediol Dehydrogenase from Rhodococcus erythropolis WZ010

Molecules 2015 Apr 20;20(4):7156-73.PMID:25903366DOI:10.3390/molecules20047156.

The gene encoding a (2R,3R)-2,3-butanediol dehydrogenase from Rhodococcus erythropolis WZ010 (ReBDH) was over-expressed in Escherichia coli and the resulting recombinant ReBDH was successfully purified by Ni-affinity chromatography. The purified ReBDH in the native form was found to exist as a monomer with a calculated subunit size of 37180, belonging to the family of the zinc-containing alcohol dehydrogenases. The enzyme was NAD(H)-specific and its optimal activity for acetoin reduction was observed at pH 6.5 and 55 °C. The optimal pH and temperature for 2,3-butanediol oxidation were pH 10 and 45 °C, respectively. The enzyme activity was inhibited by ethylenediaminetetraacetic acid (EDTA) or metal ions Al3+, Zn2+, Fe2+, Cu2+ and Ag+, while the addition of 10% (v/v) dimethyl sulfoxide (DMSO) in the reaction mixture increased the activity by 161.2%. Kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for diacetyl and NADH in comparison to those for (2R,3R)-2,3-butanediol and NAD+. The activity of acetoin reduction was 7.7 times higher than that of (2R,3R)-2,3-butanediol oxidation when ReBDH was assayed at pH 7.0, suggesting that ReBDH-catalyzed reaction in vivo might favor (2R,3R)-2,3-butanediol formation rather than (2R,3R)-2,3-butanediol oxidation. The enzyme displayed absolute stereospecificity in the reduction of diacetyl to (2R,3R)-2,3-butanediol via (R)-acetoin, demonstrating its potential application on the synthesis of (R)-chiral alcohols.

Purification and Characterization of (2R,3R)-2,3-Butanediol Dehydrogenase of the Human Pathogen Neisseria gonorrhoeae FA1090 Produced in Escherichia coli

Mol Biotechnol 2021 Jun;63(6):491-501.PMID:33763825DOI:10.1007/s12033-021-00308-9.

2,3-Butanediol dehydrogenase (BDH), also known as acetoin/diacetyl reductase, is a pivotal enzyme for the formation of 2,3-butanediol (2,3-BD), a chiral compound with potential roles in the virulence of certain pathogens. Here, a NAD(H)-dependent (2R,3R)-BDH from Neisseria gonorrhoeae FA1090 (NgBDH), the causative agent of gonorrhoea, was functionally characterized. Sequence analysis indicated that it belongs to zinc-containing medium-chain dehydrogenase/reductase family. The recombinant NgBDH migrated as a single band with a size of around 45 kDa on SDS-PAGE and could be confirmed by Western blotting and mass spectrometry. For the oxidation of either (2R,3R)-2,3-BD or meso-2,3-BD, the enzyme exhibited a broad pH optimum between pH 9.5 to 11.5. For the reduction of (3R/3S)-acetoin, the pH optimum was around 6.5. The enzyme could catalyze the stereospecific oxidation of (2R,3R)-2,3-BD (Km = 0.16 mM, kcat/Km = 673 s-1 · mM-1) and meso-BD (Km = 0.72 mM, kcat/Km = 165 s-1 · mM-1). Moreover, it could also reduce (3R/3S)-acetoin with a Km of 0.14 mM and a kcat/Km of 885 s-1 · mM-1. The results presented here contribute to understand the 2,3-BD metabolism in N. gonorrhoeae and pave the way for studying the influence of 2,3-BD metabolism on the virulence of this pathogen in the future.

Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene

J Biol Chem 2000 Nov 17;275(46):35876-85.PMID:10938079DOI:10.1074/jbc.M003035200.

The completion of the Saccharomyces cerevisiae genome project in 1996 showed that almost 60% of the potential open reading frames of the genome had no experimentally determined function. Using a conserved sequence motif present in the zinc-containing medium-chain alcohol dehydrogenases, we found several potential alcohol dehydrogenase genes with no defined function. One of these, YAL060W, was overexpressed using a multicopy inducible vector, and its protein product was purified to homogeneity. The enzyme was found to be a homodimer that, in the presence of NAD(+), but not of NADP, could catalyze the stereospecific oxidation of (2R,3R)-2, 3-butanediol (K(m) = 14 mm, k(cat) = 78,000 min(-)(1)) and meso-butanediol (K(m) = 65 mm, k(cat) = 46,000 min(-)(1)) to (3R)-acetoin and (3S)-acetoin, respectively. It was unable, however, to further oxidize these acetoins to diacetyl. In the presence of NADH, it could catalyze the stereospecific reduction of racemic acetoin ((3R/3S)- acetoin; K(m) = 4.5 mm, k(cat) = 98,000 min(-)(1)) to (2R,3R)-2,3-butanediol and meso-butanediol, respectively. The substrate stereospecificity was determined by analysis of products by gas-liquid chromatography. The YAL060W gene product can therefore be classified as an NAD-dependent (2R,3R)-2,3-butanediol dehydrogenase (BDH). S. cerevisiae could grow on 2,3-butanediol as the sole carbon and energy source. Under these conditions, a 3. 5-fold increase in (2R,3R)-2,3-butanediol dehydrogenase activity was observed in the total cell extracts. The isoelectric focusing pattern of the induced enzyme coincided with that of the pure BDH (pI 6.9). The disruption of the YAL060W gene was not lethal for the yeast under laboratory conditions. The disrupted strain could also grow on 2,3-butanediol, although attaining a lesser cell density than the wild-type strain. Taking into consideration the substrate specificity of the YAL060W gene product, we propose the name of BDH for this gene. The corresponding enzyme is the first eukaryotic (2R, 3R)-2,3-butanediol dehydrogenase characterized of the medium-chain dehydrogenase/reductase family.

Discovery of (1S,2R,3R)-2,3-dimethyl-2-phenyl-1-sulfamidocyclopropanecarboxylates: novel and highly selective aggrecanase inhibitors

J Med Chem 2011 Apr 28;54(8):2839-63.PMID:21417219DOI:10.1021/jm101609j.

Aggrecanases, particularly aggrecanase-1 (ADAMTS-4) and aggrecanase-2 (ADAMTS-5), are believed to be key enzymes involved in the articular cartilage breakdown that leads to osteoarthritis. Thus, aggrecanases are considered to be viable drug targets for the treatment of this debilitating disease. A series of (1S,2R,3R)-2,3-dimethyl-2-phenyl-1-sulfamidocyclopropanecarboxylates was discovered to be potent, highly selective, and orally bioavailable aggrecanase inhibitors. These compounds have unique P1' groups comprising novel piperidine- or piperazine-based heterocycles that are connected to a cyclopropane amino acid scaffold via a sulfamido linkage. These P1' groups are quite effective in imparting selectivity over other MMPs, and this selectivity was further increased by incorporation of a methyl substituent in the 2-position of the cyclopropane ring. In contrast to classical hydroxamate-based inhibitors that tend to lack metabolic stability, our aggrecanase inhibitors bear a carboxylate zinc-binding group and have good oral bioavailability. Lead compound 13b, characterized by the novel P1' portion of 1,2,3,4-tetrahydropyrido[3',4':4,5]imidazo[1,2-a]pyridine ring, is a potent and selective aggrecanse inhibitor with excellent pharmacokinetic profiles.

Identification and characterization of a mycobacterial (2R,3R)-2,3-butanediol dehydrogenase

Biosci Biotechnol Biochem 2011;75(12):2384-9.PMID:22146728DOI:10.1271/bbb.110607.

Bacterial strain B-009, capable of using racemic 1,2-propanediol (PD), was identified as a rapid-growing member of the genus Mycobacterium. The strain is phylogenetically related to M. gilvum, but has slightly different physiological characteristics. An NAD(+)-dependent enantioselective alcohol dehydrogenase, which acts on R-PD, was purified from the strain. The enzyme was a homodimer of a peptide coded by a 1047-bp gene (mbd1). A highly conserved sequence for medium-chain dehydrogenase/reductases with a preference for secondary alcohols was found in the gene. Hydroxyacetone was produced from R-PD by an enzymatic reaction, indicating that position 2 of the substrate was oxidized. The enzyme activity was highest for (2R,3R)-2,3-butanediol (R,R-BD), enabling the enzyme to be identified as (2R,3R)-2,3-butanediol dehydrogenase (R,R-BD-DH). A homology search revealed M. gilvum, M. vanbaalenii, and M. semegmatis to have ORFs similar to mbd1, suggesting the widespread distribution of genes encoding R,R-BD-DH among mycobacterial strains.