Home>>Signaling Pathways>> Neuroscience>> 5-HT Receptor>>SB-269970

SB-269970 Sale

(Synonyms: SB269970盐酸盐) 目录号 : GC37599

A 5-HT7A and adrenergic α2 receptor antagonist

SB-269970 Chemical Structure

Cas No.:201038-74-6

规格 价格 库存 购买数量
10mg
¥1,213.00
现货
50mg
¥4,018.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

The transduction of neurobehavioral effects by serotonin (5-hydroxy tryptamine; 5-HT) is mediated by at least seven major 5-HT receptor subtypes. SB-269970 is a potent 5-HT7A antagonist (pKi = 8.9) that demonstrates >50-fold binding selectivity over 5-HT5A and >250-fold selectivity over 5-HT1, 5-HT2, 5-HT4, 5-HT6, adrenergic α1, dopamine D2, and dopamine D3 receptors.1 It is also reported to block adrenergic α2 receptors in guinea pig vas deferens.2 SB-269970 has been used to target the 5-HT7 receptor in the study of schizophrenia-like cognitive deficits.3

1.Lovell, P.J., Bromidge, S.M., Dabbs, S., et al.A novel, potent, and selective 5-HT7 antagonist: (R)-3-(2-(2-(4-Methylpiperidin-1-yl)ethyl)pyrrolidine-1-sulfonyl) phenol (SB-269970)J. Med. Chem.43(3)342-345(2000) 2.Foong, J.P.P., and Bornstein, J.C.5-HT antagonists NAN-190 and SB 269970 block α2-adrenoceptors in the guinea pigNeuroreport20(3)325-330(2009) 3.Nikiforuk, A., Kos, T., Fijal, K., et al.Effects of the selective 5-HT7 receptor antagonist SB-269970 and amisulpride on ketamine-induced schizophrenia-like deficits in ratsPLoS One8(6)1-12(2013)

Chemical Properties

Cas No. 201038-74-6 SDF
别名 SB269970盐酸盐
Canonical SMILES OC1=CC=CC(S(=O)(N2[C@@H](CCN3CCC(C)CC3)CCC2)=O)=C1
分子式 C18H28N2O3S 分子量 352.49
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.837 mL 14.1848 mL 28.3696 mL
5 mM 0.5674 mL 2.837 mL 5.6739 mL
10 mM 0.2837 mL 1.4185 mL 2.837 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

The 5-HT7 receptor antagonist SB-269970 alleviates seizure activity and downregulates hippocampal c-Fos expression in pentylenetetrazole-induced kindled rats

Neurol Res 2022 Sep;44(9):786-796.PMID:35404776DOI:10.1080/01616412.2022.2064700.

Objectives: Recently, studies have demonstrated that serotonin type 7 receptors (5-HT7) have conflincting effects on neuronal excitability in different brain regions. However, the effect of 5-HT7 on seizures has not been exactly elucidated yet. Therefore, our aim in this study was to investigate the effects of 5-HT7 antagonist SB-269970 on pentylenetetrazole (PTZ) induced fully kindled rats. Methods: In the study, 32 adult male Wistar Albino rats (weighing 220-260 g) were used. Rats were injected with PTZ (35 mg/kg) intraperitoneally every other day to generate kindling model. 5-CT (0.1 mg/kg) and SB-269970 (1 mg/kg) were administered 30 min before acute seizure induction with PTZ (35 mg/kg). Seizure stages were determined according to the Racine scale. After electrocorticography (ECoG) recordings of seizure-induced rats were obtained, the animals were sacrificed by decapitation. The hippocampal GABA levels were determined by ELISA kit and the number of c-Fos positive neurons in the hippocampal dentate gyrus (DG), CA1 and CA3 areas were measured by immunohistochemical method. Results: The results showed that SB-269970 reduced the number of spikes, percent seizure duration and duration of generalized tonic-clonic seizures (dGTCS), while increasing the onset time of generalized tonic-clonic seizures (oGTCS). The hippocampal GABA levels were significantly increased in the SB-269970 group compared with the PTZ group. In addition, SB-269970 reduced the number of c-Fos positive cells in hippocampal CA1 area. Discussion: 5-HT7 antagonist SB-269970 displays anticonvulsant effects on PTZ-induced seizures in fully kindled rats and these effects may be related to GABAergic activity in the hippocampus.

Characterization of SB-269970-A, a selective 5-HT(7) receptor antagonist

Br J Pharmacol 2000 Jun;130(3):539-48.PMID:10821781DOI:10.1038/sj.bjp.0703357.

The novel 5-HT(7) receptor antagonist, SB-269970-A, potently displaced [(3)H]-5-CT from human 5-HT(7(a)) (pK(i) 8.9+/-0.1) and 5-HT(7) receptors in guinea-pig cortex (pK(i) 8.3+/-0.2). 5-CT stimulated adenylyl cyclase activity in 5-HT(7(a))/HEK293 membranes (pEC(50) 7.5+/-0.1) and SB-269970-A (0.03 - 1 microM) inhibited the 5-CT concentration-response with no significant alteration in the maximal response. The pA(2) (8.5+/-0.2) for SB-269970-A agreed well with the pK(i) determined from [(3)H]-5-CT binding studies. 5-CT-stimulated adenylyl cyclase activity in guinea-pig hippocampal membranes (pEC(50) of 8.4+/-0.2) was inhibited by SB-269970-A (0.3 microM) with a pK(B) (8.3+/-0.1) in good agreement with its antagonist potency at the human cloned 5-HT(7(a)) receptor and its binding affinity at guinea-pig cortical membranes. 5-HT(7) receptor mRNA was highly expressed in human hypothalamus, amygdala, thalamus, hippocampus and testis. SB-269970-A was CNS penetrant (steady-state brain : blood ratio of ca. 0.83 : 1 in rats) but was rapidly cleared from the blood (CLb=ca. 140 ml min(-1) kg(-1)). Following a single dose (3 mg kg(-1)) SB-269970 was detectable in rat brain at 30 (87 nM) and 60 min (58 nM). In guinea-pigs, brain levels averaged 31 and 51 nM respectively at 30 and 60 min after dosing, although the compound was undetectable in one of the three animals tested. 5-CT (0.3 mg kg(-1) i.p.) induced hypothermia in guinea-pigs was blocked by SB-269970-A (ED(50) 2.96 mg kg(-1) i.p.) and the non-selective 5-HT(7) receptor antagonist metergoline (0.3 - 3 mg kg(-1) s.c.), suggesting a role for 5-HT(7) receptor stimulation in 5-CT induced hypothermia in guinea-pigs. SB-269970-A (30 mg kg(-1)) administered at the start of the sleep period, significantly reduced time spent in Paradoxical Sleep (PS) during the first 3 h of EEG recording in conscious rats.

Differential inverse agonist efficacies of SB-258719, SB-258741 and SB-269970 at human recombinant serotonin 5-HT7 receptors

Eur J Pharmacol 2004 Jul 14;495(2-3):97-102.PMID:15249157DOI:10.1016/j.ejphar.2004.05.033.

Recombinant 5-hydroxytryptamine 5-HT7 receptors are known to express constitutive, i.e., agonist-independent activity. Nonselective ligands, like methiothepin, ritanserin or clozapine behave as full inverse agonists at 5-HT7 receptors. The aim of the present study was to evaluate the degree of inverse agonist activity of three selective 5-HT7 receptor antagonists ((R)-3,N-dimethyl-N-[1-methyl-3-(4-methyl-piperidin-1-yl)propyl]benzene sulfonamide or SB-258719, R-(+)-1-(toluene-3-sulfonyl)-2-[2-(4-methylpiperidin-1-yl)ethyl]-pyrrolidine or SB-258741 and (R)-3-(2-(2-(4-methylpiperidin-1-yl)ethyl)-pyrrolidine-1-sulfonyl)-phenol or SB-269970) in the same model. cAMP accumulation was measured in intact Chinese hamster ovary (CHO) cells expressing human recombinant 5-HT7a receptors. In these cells, 5-HT stimulated cAMP levels and a series of ligands antagonized the effect of 5-HT with a 5-HT7 receptor-like profile. SB-258719 had no inverse agonist activity, SB-258741 behaved as a partial inverse agonist and SB-269970 was a quasi-full inverse agonist (as compared to methiothepin). The inverse agonist effect of SB-269970 was antagonized in a concentration-dependent manner by SB-258719. The widespread spectrum of inverse agonist activities shown by these compounds should help assessing the physiological relevance of constitutive 5-HT7 receptor activity in native tissues.

5-HT7 receptor antagonism (SB-269970) attenuates bleomycin-induced pulmonary fibrosis in rats via downregulating oxidative burden and inflammatory cascades and ameliorating collagen deposition: Comparison to terguride

Eur J Pharmacol 2017 Nov 5;814:114-123.PMID:28821451DOI:10.1016/j.ejphar.2017.08.014.

The neurotransmitter 5-hydroxytryptamine (5-HT) is involved in regulation of local tissue inflammation and repair through a set of receptors (5-HT1-7 receptors), which are expressed in the lung. Considering the protective importance of 5-HT receptor antagonists against development of pulmonary fibrosis, we evaluated whether 5-HT7 receptor antagonist (SB-269970) modulates lung inflammatory and fibrogenic processes in comparison with 5-HT2A/B receptor antagonist (terguride), in bleomycin (BLM)-induced idiopathic pulmonary fibrosis (IPF) model. IPF model induced by a single dose of intra-tracheal BLM instillation (5mg/kg), and rats were treated with intraperitoneal injection of SB-269970 (1mg/kg day) or terguride (1.2mg/kg/d). The experiment was carried out on two separate sets of rats that were killed at day 7th and day 21st to evaluate the endpoint of the IPF inflammatory and fibrogenic phases, respectively. During the inflammatory phase 5-HT2A/B and 5-HT7 receptor antagonists attenuated the BLM-induced increase in the lung fluid content, the inflammatory cytokines levels and oxidative stress burden. In the fibrogenic phase, both SB-269970 and terguride reduced the serotonin concentrations in lung homogenates and significantly protected against IPF fibrogenic phase by attenuating collagen deposition and mRNA expression of both transforming growth factor-β1 (TGF- β1), and procollagen type Ӏ (PINP). 5-hydroxytryptamine 5-HT7 receptor antagonist showed more benefits than 5-HT2A/B receptor antagonist on the deleterious effects accompanied BLM instillation. The present study showed involvement of 5-HT7 receptor in the pathophysiology of BLM-induced IPF in rats and identified it as a potential therapeutic target in lung fibrotic disorders.

Effects of SB-269970, a 5-HT7 receptor antagonist, in mouse models predictive of antipsychotic-like activity

Behav Pharmacol 2008 Mar;19(2):153-9.PMID:18332680DOI:10.1097/FBP.0b013e3282f62d8c.

5-HT7 receptors have been linked to a number of psychiatric disorders including anxiety and depression. The localization of 5-HT7 receptors in the thalamus, a key sensory processing center, and the high affinity of many atypical antipsychotic compounds for these receptors have led to the speculation of the utility of 5-HT7 antagonists in schizophrenia. The goal of these studies was to examine the effects of pharmacologic blockade and genetic ablation of 5-HT7 receptors in animal models predictive of antipsychotic-like activity. We evaluated the effects of SB-269970, a selective 5-HT7 receptor antagonist, on amphetamine and ketamine-induced hyperactivity and prepulse inhibition (PPI) deficits. In addition, sensorimotor gating function and locomotor activity were evaluated in 5-HT7 knockout mice. Locomotor activity was measured for up to 180 min using an automated infrared photobeam system, and PPI was evaluated in startle chambers. SB-269970 (3, 10 and 30 mg/kg, intraperitoneally) significantly blocked amphetamine [3 mg/kg, subcutaneously (s.c.)] and ketamine (30 mg/kg, s.c.)-induced hyperactivity and reversed amphetamine (10 mg/kg, s.c.)-induced but not ketamine (30 mg/kg, s.c.)-induced PPI deficits, without changing spontaneous locomotor activity and startle amplitude. The largest dose of SB-269970 did not block the effects of amphetamine in 5-HT7 knockout mice. Collectively, these results indicate that blockade of 5-HT7 receptors partially modulates glutamatergic and dopaminergic function and could be clinically useful for the treatment of positive symptoms of schizophrenia.