Home>>Peptides>>Proinsulin C-peptide human

Proinsulin C-peptide human Sale

目录号 : GC36978

Proinsulin C-peptide (human) 是一种由 31 个氨基酸残基构成的多肽,连接胰岛素原 A 链和 B 链以确保其正确折叠,具有生物活性和调节细胞的功能。

Proinsulin C-peptide human Chemical Structure

Cas No.:33017-11-7

规格 价格 库存 购买数量
1mg
¥3,150.00
现货
5mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Proinsulin C-peptide (human) is a 31-amino-acid peptide that links the A and B chains of proinsulin, ensuring its correct folding, which is biologically active and modulates cellular function [1].

[1]. R. S. Mughal, et al. Cellular mechanisms by which proinsulin C-peptide prevents insulin-induced neointima formation in human saphenous vein. Diabetologia. 2010 Aug;53(8):1761-71.

Chemical Properties

Cas No. 33017-11-7 SDF
分子式 C129H211N35O48 分子量 3020.26
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 0.3311 mL 1.6555 mL 3.311 mL
5 mM 0.0662 mL 0.3311 mL 0.6622 mL
10 mM 0.0331 mL 0.1655 mL 0.3311 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Multiple Cell Signalling Pathways of human proinsulin C-peptide in Vasculopathy Protection

Int J Mol Sci 2020 Jan 18;21(2):645.PMID:31963760DOI:10.3390/ijms21020645.

A major hallmark of diabetes is a constant high blood glucose level (hyperglycaemia), resulting in endothelial dysfunction. Transient or prolonged hyperglycemia can cause diabetic vasculopathy, a secondary systemic damage. C-Peptide is a product of cleavage of proinsulin by a serine protease that occurs within the pancreatic β-cells, being secreted in similar amounts as insulin. The biological activity of human C-peptide is instrumental in the prevention of diabetic neuropathy, nephropathy and other vascular complications. The main feature of type 1 diabetes mellitus is the lack of insulin and of C-peptide, but the progressive β-cell loss is also observed in later stage of type 2 diabetes mellitus. C-peptide has multifaceted effects in animals and diabetic patients due to the activation of multiple cell signalling pathways, highlighting p38 mitogen-activated protein kinase and extracellular signal-regulated kinase ½, Akt, as well as endothelial nitric oxide production. Recent works highlight the role of C-peptide in the prevention and amelioration of diabetes and also in organ-specific complications. Benefits of C-peptide in microangiopathy and vasculopathy have been shown through conservation of vascular function, and also in the prevention of endothelial cell death, microvascular permeability, neointima formation, and in vascular inflammation. Improvement of microvascular blood flow by replacing a physiological amount of C-peptide, in several tissues of diabetic animals and humans, mainly in nerve tissue, myocardium, skeletal muscle, and kidney has been described. A review of the multiple cell signalling pathways of human proinsulin C-peptide in vasculopathy protection is proposed, where the approaches to move beyond the state of the art in the development of innovative and effective therapeutic options of diabetic neuropathy and nephropathy are discussed.

Proinsulin C-peptide--a consensus statement

Int J Exp Diabetes Res 2001;2(2):145-51.PMID:12369718DOI:10.1155/edr.2001.145.

In recent years the physiological role of the proinsulin C-peptide has received increasing attention, focusing on the potential therapeutic value of C-peptide replacement in preventing and ameliorating type 1 diabetic complications. In order to consolidate these new data and to identify the immediate directions of C-peptide research and its clinical usefulness, an International Symposium was held in Detroit, Michigan, on October 20-21, 2000, under the auspices of the Wayne State University/Morris Hood Jr. Comprehensive Diabetes Center. In this communication, we review the cellular, physiological and clinical effects of C-peptide replacement in animal models and in patients with type 1 diabetes. Finally, recommendations are presented as to the most urgent studies that should be pursued to further establish the biological action of C-peptide and its therapeutic value.

proinsulin C-peptide is an autoantigen in people with type 1 diabetes

Proc Natl Acad Sci U S A 2018 Oct 16;115(42):10732-10737.PMID:30275329DOI:10.1073/pnas.1809208115.

Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells, found within the islets of Langerhans in the pancreas, are destroyed by islet-infiltrating T cells. Identifying the antigenic targets of beta-cell reactive T cells is critical to gain insight into the pathogenesis of T1D and develop antigen-specific immunotherapies. Several lines of evidence indicate that insulin is an important target of T cells in T1D. Because many human islet-infiltrating CD4+ T cells recognize C-peptide-derived epitopes, we hypothesized that full-length C-peptide (PI33-63), the peptide excised from proinsulin as it is converted to insulin, is a target of CD4+ T cells in people with T1D. CD4+ T cell responses to full-length C-peptide were detected in the blood of: 14 of 23 (>60%) people with recent-onset T1D, 2 of 15 (>13%) people with long-standing T1D, and 1 of 13 (<8%) HLA-matched people without T1D. C-peptide-specific CD4+ T cell clones, isolated from six people with T1D, recognized epitopes from the entire 31 amino acids of C-peptide. Eighty-six percent (19 of 22) of the C-peptide-specific clones were restricted by HLA-DQ8, HLA-DQ2, HLA-DQ8trans, or HLA-DQ2trans, HLA alleles strongly associated with risk of T1D. We also found that full-length C-peptide was a much more potent agonist of some CD4+ T cell clones than an 18mer peptide encompassing the cognate epitope. Collectively, our findings indicate that proinsulin C-peptide is a key target of autoreactive CD4+ T cells in T1D. Hence, full-length C-peptide is a promising candidate for antigen-specific immunotherapy in T1D.

proinsulin C-peptide: friend or foe in the development of diabetes-associated complications?

Vasc Health Risk Manag 2008;4(6):1283-8.PMID:19337542DOI:10.2147/vhrm.s3955.

The proinsulin connecting peptide, C-peptide, is a cleavage product of insulin synthesis that is co-secreted with insulin by pancreatic beta-cells following glucose stimulation. Recombinant insulin, used in the treatment of diabetes, lacks C-peptide and preclinical and clinical studies suggest that lack of C-peptide may exacerbate diabetes-associated complications. In accordance with this, several studies suggest that C-peptide has beneficial effects in a number of diabetes-associated complications. C-peptide has been shown to prevent diabetic neuropathy by improving endoneural blood flow, preventing neuronal apoptosis and by preventing axonal swelling. In the vascular system, C-peptide has been shown to prevent vascular dysfunction in diabetic rats, and to possess anti-proliferative effects on vascular smooth muscle cells, which may prevent atherosclerosis. However, C-peptide depositions have been found in arteriosclerotic lesions of patients with hyperinsulinemic diabetes and C-peptide has been shown to induce pro-inflammatory mediators, such as nuclear factor kappa B, inducible nitric oxide synthase, and cyclooxygenase-2, indicating that C-peptide treatment could be associated with side-effects that may accelerate the development of diabetes-associated complications. This review provides a brief summary of recent research in the field and discusses potential beneficial and detrimental effects of C-peptide supplementation.

Biological activity versus physiological function of proinsulin C-peptide

Cell Mol Life Sci 2021 Feb;78(3):1131-1138.PMID:32959070DOI:10.1007/s00018-020-03636-2.

proinsulin C-peptide (C-peptide) has drawn much research attention. Even if the peptide has turned out not to be important in the treatment of diabetes, every phase of C-peptide research has changed our view on insulin and peptide hormone biology. The first phase revealed that peptide hormones can be subject to processing, and that their pro-forms may involve regulatory stages. The second phase revealed the possibility that one prohormone could harbor more than one activity, and that the additional activities should be taken into account in the development of hormone-based therapies. In the third phase, a combined view of the evolutionary patterns in hormone biology allowed an assessment of C-peptide´s role in physiology, and of how biological activities and physiological functions are shaped by evolutionary processes. In addition to this distinction, C-peptide research has produced further advances. For example, C-peptide fragments are successfully administered in immunotherapy of type I diabetes, and plasma C-peptide levels remain a standard for measurement of beta cell activity in patients. Even if the concept of C-peptide as a hormone is presently not supported, some of its bioactivities continue to influence our understanding of evolutionary changes of also other peptides.