Home>>Signaling Pathways>> Chromatin/Epigenetics>> Histone Acetyltransferases>>CPTH2

CPTH2 Sale

目录号 : GC39365

A HAT inhibitor

CPTH2 Chemical Structure

Cas No.:357649-93-5

规格 价格 库存 购买数量
10mg
¥1,260.00
现货
50mg
¥3,150.00
现货
100mg
¥4,950.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Gcn5 is a chromatin modifying factor whose HAT activity is required to acetylate histone H3 lysine 9 (K9) and K14, which facilitates transcription elongation by relaxing nucleosomes. CPTH2 inhibits the HAT activity of Gcn5 both in vitro and in vivo, reducing histone H3K14 acetylation at a concentration of 0.8 mM.1 It is a useful tool to study the impact of Gcn5-dependent acetylation in various biological systems and recently has been used to control the replication of human adenovirus.2

1.Chimenti, F., Bizzarri, B., Maccioni, E., et al.A novel histone acetyltransferase inhibitor modulating Gcn5 network: Cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazoneJ. Med. Chem.52530-536(2009) 2.Ablack, J.N.G., Cohen, M., Thillainadesan, G., et al.Cellular GCN5 is a novel regulator of human adenovirus E1A-conserved region 3 transactivationJ. Virol.86(15)8198-8209(2012)

Chemical Properties

Cas No. 357649-93-5 SDF
Canonical SMILES ClC1=CC=C(C2=CSC(N/N=C3CCCC/3)=N2)C=C1
分子式 C14H14ClN3S 分子量 291.8
溶解度 DMSO: 25 mg/mL (85.68 mM); Water: < 0.1 mg/mL (insoluble) 储存条件 4°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.427 mL 17.135 mL 34.27 mL
5 mM 0.6854 mL 3.427 mL 6.854 mL
10 mM 0.3427 mL 1.7135 mL 3.427 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

KAT3B-p300 and H3AcK18/H3AcK14 levels are prognostic markers for kidney ccRCC tumor aggressiveness and target of KAT inhibitor CPTH2

Clin Epigenetics 2018 Apr 4;10:44.PMID:29632619DOI:10.1186/s13148-018-0473-4.

Background: Kidney cancer and clear cell renal carcinoma (ccRCC) are the 16th most common cause of death worldwide. ccRCC is often metastasized at diagnosis, and surgery remains the main treatment; therefore, early diagnosis and new therapeutic strategies are highly desirable. KAT inhibitor CPTH2 lowers histone H3 acetylation and induces apoptosis in colon cancer and cultured cerebellar granule neurons. In this study, we have evaluated the effects of CPTH2 on ccRCC 786-O cell line and analyzed drug targets expressed in ccRCC tumor tissues at different grade. Results: CPTH2 decreases cell viability, adhesion, and invasiveness in ccRCC cell line 786-O. It shows preferential inhibition for KAT3B-p300 with hypoacetilating effects on histone H3 at specific H3-K18. Immunohistochemical analysis of 70 ccRCC tumor tissues compared with peritumoral normal epithelium showed a statistical significant reduction of p300/H3AcK18 paralleled by an increase of H3AcK14 in G1 grade and an opposed trend during tumor progression to worst grades. In this study, we demonstrate that these marks are CPTH2 targets and significative prognosticators of low-grade ccRCC tumor. Conclusions: ccRCC is substantially insensitive to current therapies, and the efficacy of clinical treatment is dependent on the dissemination stage of the tumor. The present study shows that CPTH2 is able to induce apoptosis and decrease the invasiveness of a ccRCC cell line through the inhibition of KAT3B. In a tumor tissue analysis, we identified new prognosticator marks in grade G1 ccRCC tumors. Low KAT3B/H3AcK18 vs. high H3AcK14 were found in G1 while an opposed trend characterized tumor progression to worst grades. Our collected results suggest that CPTH2 reducing KAT3B and H3AcK18 can be considered a promising candidate for counteracting the progression of ccRCC tumors.

Histone acetyltransferase inhibition reverses opacity in rat galactose-induced cataract

PLoS One 2022 Nov 23;17(11):e0273868.PMID:36417410DOI:10.1371/journal.pone.0273868.

Cataract, a disease that causes opacity of the lens, is the leading cause of blindness worldwide. Cataracts secondary to diabetes are common, even in young patients, so they are of significant clinical importance. Here, we used an ex vivo model of galactose-induced cataracts in the rat lens to investigate the therapeutic effects of histone acetyltransferase (HAT) inhibitors. Among the tested HAT inhibitors, TH1834 was the only one that could reverse most of the opacity once it had formed in the lens. Combination treatment with C646/CPTH2 and CBP30/CPTH2 also had therapeutic effects. In lens cross-sections, vacuoles were present in the tissue of the cortical equatorial region of untreated cataract samples. In treated cataract samples, lens tissue regenerated to fill the vacuoles. To identify the genes regulated by HAT inhibitors, qRT-PCR was performed on treated and untreated cataract samples to determine candidate genes. Expression of Acta1 and Stmn4, both of which are involved in the cytoskeleton, were altered significantly in C646+CPTH2 samples. Expression of Emd, a nuclear membrane protein, and Prtfdc1, which is involved in cancer cell proliferation, were altered significantly in CBP30+CPTH2 samples. Acta1, Acta2, Arrdc3, Hebp2, Hist2h2ab, Pmf1, Ppdpf, Rbm3, RGD1561694, Slc16a6, Slfn13, Tagln, Tgfb1i1, and Tuba1c in TH1834 samples were significantly altered. These genes were primarily related to regulation of cell proliferation, the cytoskeleton, and cell differentiation. Expression levels increased with the onset of cataracts and was suppressed in samples treated with HAT inhibitors.

Design, synthesis, cytotoxicity, and molecular docking studies of novel thiazolyl-hydrazone derivatives as histone lysine acetyl-transferase inhibitors and apoptosis inducers

Arch Pharm (Weinheim) 2022 Jul;355(7):e2200076.PMID:35393652DOI:10.1002/ardp.202200076.

Compounds containing both thiazole and arylsulfone moieties are recognized for their high biological activity and ability to fight a variety of ailments. Thus, in this context, new derivatives of (thiazol-2-yl)hydrazone with an arylsulfone moiety were synthesized as CPTH2 analogs with potent anti-histone lysine acetyl-transferase activity. Compounds 3, 4, 10b, and 11b showed an excellent inhibitory effect on P300 (E1A-associated protein p300), compared to CPTH2. Among all the tested derivatives, compound 10b revealed the highest activity against both P300 and pCAF. In addition, the new hits were tested for anticancer efficacy against two leukemia cell lines. Most of them showed a moderate to potent antitumor effect on the k562 and CCRF-CEM cell lines. Interestingly, the activity of compound 10b against the k562 cell line was found to be higher than that of CPTH2. Furthermore, it showed a good safety profile, better than CPTH2 on normal cells. Molecular docking analysis was carried out to reveal the crucial binding contacts in the inhibition of the P300 and pCAF enzymes.

A novel histone acetyltransferase inhibitor modulating Gcn5 network: cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazone

J Med Chem 2009 Jan 22;52(2):530-6.PMID:19099397DOI:10.1021/jm800885d.

Acetylation is a key modulator of genome accessibility through decondensation of the chromatin structure. The balance between acetylation and opposite deacetylation is, in fact, a prerequisite for several cell functions and differentiation. To find modulators of the histone acetyltransferase Gcn5p, we performed a phenotypic screening on a set of newly synthesized molecules derived from thiazole in budding yeast Saccharomyces cerevisiae. We selected compounds that induce growth inhibition in yeast strains deleted in genes encoding known histone acetyltransferases. A novel molecule CPTH2, cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazone, was selected based on its inhibitory effect on the growth of a gcn5Delta strain. We demonstrated a specific chemical-genetic interaction between CPTH2 and HAT Gcn5p, indicating that CPTH2 inhibits the Gcn5p dependent functional network. CPTH2 inhibited an in vitro HAT reaction, which is reverted by increasing concentration of histone H3. In vivo, it decreased acetylation of bulk histone H3 at the specific H3-AcK14 site. On the whole, our results demonstrate that CPTH2 is a novel HAT inhibitor modulating Gcn5p network in vitro and in vivo.

A Histone Acetyltransferase Inhibitor with Antifungal Activity against CTG clade Candida Species

Microorganisms 2019 Jul 15;7(7):201.PMID:31311209DOI:10.3390/microorganisms7070201.

Candida species represent one of the most frequent causes of hospital-acquired infections in immunocompromised patient cohorts. Due to a very limited set of antifungals available and an increasing prevalence of drug resistance, the discovery of novel antifungal targets is essential. Targeting chromatin modifiers as potential antifungal targets has gained attention recently, mainly due to their role in regulating virulence in Candida species. Here, we describe a novel activity for the histone acetyltransferase inhibitor Cyclopentylidene-[4-(4-chlorophenyl)thiazol-2-yl)hydrazone (CPTH2) as a specific inhibitor of CTG clade Candida species. Furthermore, we show that CPTH2 has fungicidal activity and protects macrophages from Candida-mediated death. Thus, this work could provide a starting point for the development of novel antifungals specific to CTG clade Candida species.