Home>>Signaling Pathways>> JAK/STAT Signaling>> STAT>>AC-4-130

AC-4-130 Sale

目录号 : GC62272

AC-4-130 是一种有效的 STAT5 SH2 结构域抑制剂。AC-4-130 直接与 STAT5 结合并破坏 STAT5 激活、二聚化、核易位和 STAT5 依赖性基因转录。AC-4-130 在 FLT3-ITD 驱动的白血病细胞中诱导细胞周期停滞和细胞凋亡。AC-4-130 具有抗癌活性,可以有效阻断急性髓系白血病 (AML) 中 STAT5 活性的病理水平。

AC-4-130 Chemical Structure

Cas No.:1834571-82-2

规格 价格 库存 购买数量
5 mg
¥2,250.00
现货
10 mg
¥3,420.00
现货
25 mg
¥6,750.00
现货
50 mg
¥11,700.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

AC-4-130 is a potent STAT5 SH2 domain inhibitor. AC-4-130 directly binds to STAT5 and disrupts STAT5 activation, dimerization, nuclear translocation, and STAT5-dependent gene transcription. AC-4-130 induces cell cycle arrest and apoptosis in FLT3-ITD-driven leukemic cells. AC-4-130 has anti-cancer activity and can efficiently block pathological levels of STAT5 activity in acute myeloid leukemia (AML)[1].

AC-4-130 (0.1-100 µM; 72 hours) leads to a significant increase in apoptosis in a dose-dependent and time-dependent manner in MV4-11 or MOLM-13 cells[1]. AC-4-130 (2, 5 µM; 72 hours) induces cell cycle arrest with an increase in G0/G1 arrested cells and a concomitant reduction in cells in S or G2/M[1]. AC-4-130 (0.5-2; 24 hours) reveals reduced pY-STAT5 levels both in the cytoplasm and nucleus[1]. AC-4-130-mediated STAT5 inhibition efficiently blocks the proliferation and clonogenic growth of primary human AML cells, while healthy CD34+ cells are less sensitive[1].

[1]. Bettina Wingelhofer, et al. Pharmacologic inhibition of STAT5 in acute myeloid leukemia. Leukemia. 2018 May;32(5):1135-1146.

Chemical Properties

Cas No. 1834571-82-2 SDF
分子式 C37H36ClF5N2O5S 分子量 751.2
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.3312 mL 6.656 mL 13.312 mL
5 mM 0.2662 mL 1.3312 mL 2.6624 mL
10 mM 0.1331 mL 0.6656 mL 1.3312 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Rationale for a Combination Therapy with the STAT5 Inhibitor AC-4-130 and the MCL1 Inhibitor S63845 in the Treatment of FLT3-Mutated or TET2-Mutated Acute Myeloid Leukemia

Int J Mol Sci 2021 Jul 28;22(15):8092.PMID:34360855DOI:10.3390/ijms22158092.

The FMS-like tyrosine kinase 3 (FLT3) gene is mutated in one-third of patients with de novo acute myeloid leukemia (AML). Mutated FLT3 variants are constitutively active kinases signaling via AKT kinase, MAP kinases, and STAT5. FLT3 inhibitors have been approved for the treatment of FLT3-mutated AML. However, treatment response to FLT3 inhibitors may be short-lived, and resistance may emerge. Compounds targeting STAT5 may enhance and prolong effects of FLT3 inhibitors in this subset of patients with FLT3-mutated AML. Here STAT5-inhibitor AC-4-130, FLT3 inhibitor midostaurin (PKC412), BMI-1 inhibitor PTC596, MEK-inhibitor trametinib, MCL1-inhibitor S63845, and BCL-2 inhibitor venetoclax were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells grown in the absence or presence of bone marrow stroma. Synergistic effects on cell viability were detected in both FLT3-mutated and FLT3-wild-type AML cells treated with AC-4-130 in combination with the MCL1 inhibitor S63845. AML patient samples with a strong response to AC-4-130 and S63845 combination treatment were characterized by mutated FLT3 or mutated TET2 genes. Susceptibility of AML cells to AC-4-130, PTC596, trametinib, PKC412, and venetoclax was altered in the presence of HS-5 stroma. Only the MCL1 inhibitor S63845 induced cell death with equal efficacy in the absence or presence of bone marrow stroma. The combination of the STAT5-inhibitor AC-4-130 and the MCL1 inhibitor S63845 may be an effective treatment targeting FLT3-mutated or TET2-mutated AML.

Pharmacologic inhibition of STAT5 in acute myeloid leukemia

Leukemia 2018 May;32(5):1135-1146.PMID:29472718DOI:10.1038/s41375-017-0005-9.

The transcription factor STAT5 is an essential downstream mediator of many tyrosine kinases (TKs), particularly in hematopoietic cancers. STAT5 is activated by FLT3-ITD, which is a constitutively active TK driving the pathogenesis of acute myeloid leukemia (AML). Since STAT5 is a critical mediator of diverse malignant properties of AML cells, direct targeting of STAT5 is of significant clinical value. Here, we describe the development and preclinical evaluation of a novel, potent STAT5 SH2 domain inhibitor, AC-4-130, which can efficiently block pathological levels of STAT5 activity in AML. AC-4-130 directly binds to STAT5 and disrupts STAT5 activation, dimerization, nuclear translocation, and STAT5-dependent gene transcription. Notably, AC-4-130 substantially impaired the proliferation and clonogenic growth of human AML cell lines and primary FLT3-ITD+ AML patient cells in vitro and in vivo. Furthermore, AC-4-130 synergistically increased the cytotoxicity of the JAK1/2 inhibitor Ruxolitinib and the p300/pCAF inhibitor Garcinol. Overall, the synergistic effects of AC-4-130 with TK inhibitors (TKIs) as well as emerging treatment strategies provide new therapeutic opportunities for leukemia and potentially other cancers.

PDGFRβ promotes oncogenic progression via STAT3/STAT5 hyperactivation in anaplastic large cell lymphoma

Mol Cancer 2022 Aug 31;21(1):172.PMID:36045346DOI:10.1186/s12943-022-01640-7.

Background: Anaplastic large cell lymphoma (ALCL) is an aggressive non-Hodgkin T cell lymphoma commonly driven by NPM-ALK. AP-1 transcription factors, cJUN and JUNb, act as downstream effectors of NPM-ALK and transcriptionally regulate PDGFRβ. Blocking PDGFRβ kinase activity with imatinib effectively reduces tumor burden and prolongs survival, although the downstream molecular mechanisms remain elusive. Methods and results: In a transgenic mouse model that mimics PDGFRβ-driven human ALCL in vivo, we identify PDGFRβ as a driver of aggressive tumor growth. Mechanistically, PDGFRβ induces the pro-survival factor Bcl-xL and the growth-enhancing cytokine IL-10 via STAT5 activation. CRISPR/Cas9 deletion of both STAT5 gene products, STAT5A and STAT5B, results in the significant impairment of cell viability compared to deletion of STAT5A, STAT5B or STAT3 alone. Moreover, combined blockade of STAT3/5 activity with a selective SH2 domain inhibitor, AC-4-130, effectively obstructs tumor development in vivo. Conclusions: We therefore propose PDGFRβ as a novel biomarker and introduce PDGFRβ-STAT3/5 signaling as an important axis in aggressive ALCL. Furthermore, we suggest that inhibition of PDGFRβ or STAT3/5 improve existing therapies for both previously untreated and relapsed/refractory ALK+ ALCL patients.

STAT5 is Expressed in CD34+/CD38- Stem Cells and Serves as a Potential Molecular Target in Ph-Negative Myeloproliferative Neoplasms

Cancers (Basel) 2020 Apr 21;12(4):1021.PMID:32326377DOI:10.3390/cancers12041021.

Janus kinase 2 (JAK2) and signal transducer and activator of transcription-5 (STAT5) play a key role in the pathogenesis of myeloproliferative neoplasms (MPN). In most patients, JAK2 V617F or CALR mutations are found and lead to activation of various downstream signaling cascades and molecules, including STAT5. We examined the presence and distribution of phosphorylated (p) STAT5 in neoplastic cells in patients with MPN, including polycythemia vera (PV, n = 10), essential thrombocythemia (ET, n = 15) and primary myelofibrosis (PMF, n = 9), and in the JAK2 V617F-positive cell lines HEL and SET-2. As assessed by immunohistochemistry, MPN cells displayed pSTAT5 in all patients examined. Phosphorylated STAT5 was also detected in putative CD34+/CD38- MPN stem cells (MPN-SC) by flow cytometry. Immunostaining experiments and Western blotting demonstrated pSTAT5 expression in both the cytoplasmic and nuclear compartment of MPN cells. Confirming previous studies, we also found that JAK2-targeting drugs counteract the expression of pSTAT5 and growth in HEL and SET-2 cells. Growth-inhibition of MPN cells was also induced by the STAT5-targeting drugs piceatannol, pimozide, AC-3-019 and AC-4-130. Together, we show that CD34+/CD38- MPN-SC express pSTAT5 and that pSTAT5 is expressed in the nuclear and cytoplasmic compartment of MPN cells. Whether direct targeting of pSTAT5 in MPN-SC is efficacious in MPN patients remains unknown.