Home>>Signaling Pathways>> Others>> Others>>4'-Methylacetophenone

4'-Methylacetophenone Sale

(Synonyms: 4'-甲基苯乙酮) 目录号 : GC60522

4′-methylacetophenone可以用作香料,广泛存在于食品中的挥发性化合物和某些天然复合物中。

4'-Methylacetophenone Chemical Structure

Cas No.:122-00-9

规格 价格 库存 购买数量
500mg
¥450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

4′-methylacetophenone can be used as a fragrance material. 4′-Methylacetophenone is wildly occurs in volatile compounds in food and in some natural complex substances (NCS)[1].

[1]. Api AM, et al. RIFM fragrance ingredient safety assessment, 4'-methylacetophenone, CAS Registry Number 122-00-9. Food Chem Toxicol. 2018 Dec;122 Suppl 1:S75-S83.

Chemical Properties

Cas No. 122-00-9 SDF
别名 4'-甲基苯乙酮
Canonical SMILES CC(C1=CC=C(C)C=C1)=O
分子式 C9H10O 分子量 134.18
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 7.4527 mL 37.2634 mL 74.5268 mL
5 mM 1.4905 mL 7.4527 mL 14.9054 mL
10 mM 0.7453 mL 3.7263 mL 7.4527 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Evaluation of Propiophenone, 4-Methylacetophenone and 2',4'-Dimethylacetophenone as Phytotoxic Compounds of Labdanum Oil from Cistus ladanifer L

Plants (Basel) 2023 Mar 6;12(5):1187.PMID:36904046DOI:10.3390/plants12051187.

This is the first study to evaluate the phytotoxic activity of three phenolic compounds present in the essential oil of the labdanum of Cistus ladanifer, an allelopathic species of the Mediterranean ecosystem. Propiophenone, 4'-Methylacetophenone, and 2',4'-dimethylacetophenone slightly inhibit total germination and radicle growth of Lactuca sativa, and they strongly delay germination and reduce hypocotyl size. On the other hand, the inhibition effect of these compounds on Allium cepa was stronger on total germination than on germination rate, and radicle length compared to hypocotyl size. The position and number of methyl groups will affect the efficacy of the derivative. 2',4'-dimethylacetophenone was the most phytotoxic compound. The activity of the compounds depended on their concentration and presented hormetic effects. In L. sativa, on paper, propiophenone presented greater inhibition of hypocotyl size at greater concentrations, with IC50 = 0.1 mM, whereas 4'-Methylacetophenone obtained IC50 = 0.4 mM for germination rate. When the mixture of the three compounds was applied, in L. sativa, on paper, the inhibition effect on total germination and the germination rate was significantly greater compared to the effect of the compounds when they were applied separately; moreover, the mixture inhibited radicle growth, whereas propiophenone and 4'-Methylacetophenone did not exert such effect when applied separately. The activity of the pure compounds and that of the mixture also changed based on the substrate used. When the trial was conducted in soil, the separate compounds delayed the germination of the A. cepa to a greater extent compared to the trial on paper, although they stimulated seedling growth. In soil, L. sativa against 4'-Methylacetophenone also showed the opposite effect at low concentrations (0.1 mM), with stimulation of germination rate, whereas propiophenone and 4'-Methylacetophenone presented a slightly increased effect.

Acaricidal toxicity of 2'-hydroxy-4'-methylacetophenone isolated from Angelicae koreana roots and structure-activity relationships of its derivatives

J Agric Food Chem 2012 Apr 11;60(14):3606-11.PMID:22429095DOI:10.1021/jf205379u.

The acaricidal activities of 2'-hydroxy-4'-methylacetophenone derived from Angelica koreana roots and its derivatives against Dermatophagoides farinae, Dermatophagoides pteronyssinus, and Tyrophagus putrescentiae were examined by vapor phase and contact toxicity bioassays. In the vapor phase toxicity bioassay, 2'-methylacetophenone (1.25 μg/cm(2)) was 8.0 times more toxic against D. farinae than benzyl benzoate (10.00 μg/cm(2)), followed by 3'-methylacetophenone (1.26 μg/cm(2)), 4'-Methylacetophenone (1.29 μg/cm(2)), 2'-hydroxy-4'-methylacetophenone (1.75 μg/cm(2)), and 2'-hydroxy-5'-methylacetophenone (1.96 μg/cm(2)). In the contact toxicity bioassay, 3'-methylacetophenone (0.58 μg/cm(2)) was 17.24 times more effective against D. farinae than benzyl benzoate (7.52 μg/cm(2)), followed by 2'-methylacetophenone (0.64 μg/cm(2)), 2'-hydroxy-4'-methylacetophenone (0.76 μg/cm(2)), 4'-Methylacetophenone (0.77 μg/cm(2)), and 2'-hydroxy-5'-methylacetophenone (1.16 μg/cm(2)). The acaricidal activities of 2'-hydroxy-4'-methylacetophenone derivatives against D. pteronyssinus and T. putrescentiae were similar to those against D. farinae. In terms of structure-activity relationships, acaricidal activity against the three mite species changed with the introduction of hydroxyl and methyl functional groups onto the acetophenone skeleton. Furthermore, some of 2'-hydroxy-4'-methylacetophenone derivatives could be useful for natural acaricides against three mite species.