Home>>Signaling Pathways>> Apoptosis>> Other Apoptosis>>3BDO

3BDO Sale

(Synonyms: 3BDO,MTOR激酶激活剂,自噬抑制剂) 目录号 : GC32767

A butyrolactone derivative and autophagy inhibitor

3BDO Chemical Structure

Cas No.:890405-51-3

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥693.00
现货
5mg
¥630.00
现货
10mg
¥990.00
现货
25mg
¥1,980.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Kinase experiment:

Total protein is obtained from HUVECs by using of IP lysis buffer after treatment with rapamycin (10 μM), 3BDO (60 μM) or both for 6 h. After centrifuging at 4°C, the supernatant is collected and incubated with protein A/G agarose beads and TIA1 antibody or normal mouse IgG as a control at 4°C overnight. The beads are washed 3 times with IP lysis buffer and then eluted with 4×SDS loading buffer. Ser phosphorylation is detected by western blot assay with Ser phosphorylation antibody[1].

Cell experiment:

HUVECs are isolated from umbilical cords and cultured in M199 medium with 20% (v/v) fetal bovine serum and 10 IU/mL fibroblast growth factor 2 (FGF2) in a humidified incubator at 37°C with 5% CO2. Cells up to passage 10 are used for experiments. When HUVECs are grown to 80% confluency, HUVECs are treated with DMSO or 60 µM 3BDO for 24 h, then total RNA is extracted[1].

Animal experiment:

Male apoE-/- mice (8 weeks old) are used in this study. ApoE-/- mice are fed an atherogenic diet (containing 21% fat and 0.15% cholesterol). To avoid the potential confounding effects of variation among batches of diet, a single batch is reserved and used throughout the experiment. Mice at 20 weeks older are divided into 3 groups for treatment (n=8 mice/group) for 8 weeks: control (DMSO), low-dose 3BDO (50 mg/kg/d; 3BDO-L) and high-dose 3BDO (100 mg/kg/d; 3BDO-H). The body weight of mice is measured every week during 3BDO injection. Blood samples are taken from the inferior vena cava, and animals are killed by exsanguination[2].

References:

[1]. Ge D, et al. Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells. Autophagy. 2014 Jun;10(6):957-71.
[2]. Peng N, et al. An activator of mTOR inhibits oxLDL-induced autophagy and apoptosis in vascular endothelial cells and restricts atherosclerosis in apolipoprotein E / mice. Sci Rep. 2014 Jul 1;4:5519.

产品描述

3BDO is a butyrolactone derivative and inhibitor of autophagy.1,2 It increases phosphorylation of the mammalian target of rapamycin (mTOR) substrates eIF4E-binding protein 1 (EIF4EBP1) and RPS6KB1/p70S6K1 in human umbilical vein endothelial cells (HUVECs) when used at a concentration of 60 μM.1 3BDO (60 μM) also prevents rapamycin-induced MAP1LC3B puncta formation, a marker of autophagy, in HUVECs. It inhibits apoptosis, senescence, and increases in integrin β4 levels induced by serum- and FGF2-deprivation in HUVECs when used at a concentration of 40 μg/ml.3 3BDO (80 mg/kg per day) reduces cortical and hippocampal amyloid plaque burden, inhibits autophagy in the brain, and rescues learning and memory deficits in the AβPP/PS1 transgenic mouse model of Alzheimer's disease.2

1.Ge, D., Han, L., Huang, S., et al.Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cellsAutophagy10(6)957-971(2014) 2.Wei, L., Yang, H., Xie, Z., et al.A butyrolactone derivative 3BDO alleviates memory deficits and reduces amyloid-β deposition in an AβPP/PS1 transgenic mouse modelJ. Alzheimers Dis.30(3)531-543(2012) 3.Wang, W., Liu, X., Zhang, Y., et al.Both senescence and apoptosis induced by deprivation of growth factors were inhibited by a novel butyrolactone derivative through depressing integrin β4 in vascular endothelial cellsEndothelium14(6)325-332(2007)

Chemical Properties

Cas No. 890405-51-3 SDF
别名 3BDO,MTOR激酶激活剂,自噬抑制剂
Canonical SMILES O=C1OC(COC2=C([N+]([O-])=O)C=CC=C2)CC1CC3=CC=CC=C3
分子式 C18H17NO5 分子量 327.33
溶解度 DMSO : ≥ 150 mg/mL (458.25 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.055 mL 15.2751 mL 30.5502 mL
5 mM 0.611 mL 3.055 mL 6.11 mL
10 mM 0.3055 mL 1.5275 mL 3.055 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

3BDO inhibits the proliferation, epithelial-mesenchymal transition (EMT), and stemness via suppressing survivin in human glioblastoma cells

J Cancer 2022 Jan 16;13(4):1203-1213.PMID:35281871DOI:10.7150/jca.66674.

Background: Glioblastoma (GBM) is a tumor of the central nervous system with an extremely poor prognosis. Stemness and EMT play important roles in GBM progression. 3-benzyl-5-((2-nitrophenoxy) methyl) dihydrofuran-2(3H)-one (3BDO), an autophagy inhibitor, has been reported to exert anti-cancer activities on lung carcinoma. However, the effects of 3BDO on GBM remain unknown. Therefore, the purpose of this study was to explore the effects of 3BDO on GBM and to investigate the underlying molecular mechanisms. Method: CCK-8 experiments and clone formation assays were conducted to determine the level of cell proliferation. Transwell assay was conducted to examine cell migration and invasion abilities. Western blotting and immunofluorescence staining were used to analyze protein expression levels. A xenograft mouse model was used to evaluate the effect of 3BDO in vivo. Results: We found that 3BDO inhibited U87 and U251 cell proliferation in a dose-dependent manner. Additionally, 3BDO decreased the degree of sphere formation and levels of stemness markers (sox2, nestin, and CD133) in GSCs. 3BDO also inhibited migration and invasion abilities and suppressed EMT markers (N-cadherin, vimentin, and snail) in GBM cells. Moreover, we found that 3BDO downregulated the expression of survivin in both GBM cells (U87, U251) and GSCs. Furthermore, overexpression of survivin decreased the therapeutic effect of 3BDO on EMT, invasion, migration, and proliferation of GBM cells, as well as decreased the stemness of GSCs. Finally, we demonstrated that 3BDO could inhibit tumor growth in a tumor xenograft mouse model constructed using U87 cells. Similar to the in vitro findings, 3BDO decreased the expression of survivin, EMT makers, and the degree of stemness in vivo. Conclusions: Our results demonstrate that 3BDO can repress GBM both in vitro and in vivo via downregulating survivin-mediated stemness and EMT.

3BDO Alleviates Seizures and Improves Cognitive Function by Regulating Autophagy in Pentylenetetrazol (PTZ)-Kindled Epileptic Mice Model

Neurochem Res 2022 Dec;47(12):3777-3791.PMID:36243819DOI:10.1007/s11064-022-03778-8.

3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3 H)-one (3BDO) is a mTOR agonist that inhibits autophagy. The main purpose of this study is to investigate the effects of 3BDO on seizure and cognitive function by autophagy regulation in pentylenetetrazol (PTZ)-kindled epileptic mice model. The PTZ-kindled epileptic mice model was used in study. The behavioral changes and electroencephalogram (EEG) of the mice in each group were observed. The cognitive functions were tested by Morris water maze test. The loss of hippocampal neurons was detected by hematoxylin-eosin (HE) staining and immunofluorescence analysis. Immunohistochemistry, western blot and q-PCR were employed to detect the expression of autophagy-related proteins and mTOR in the hippocampus and cortex. Less seizures, increased hippocampal neurons and reduced astrocytes of hippocampus were observed in the 3BDO-treated epileptic mice than in the PTZ-kindled epileptic mice. Morris water maze test results showed that 3BDO significantly improved the cognitive function of the PTZ-kindled epileptic mice. Western blot analyses and q-PCR revealed that 3BDO inhibited the expression of LC3, Beclin-1, Atg5, Atg7 and p-ULK1/ULK1, but increased that of p-mTOR/mTOR, p-P70S6K/P70S6K in the hippocampus and temporal lobe cortex of epileptic mice. Immunohistochemistry and immunofluorescence also showed 3BDO inhibited the LC3 expression and increased the mTOR expression in the hippocampus of epileptic mice. In addition, the autophagy activator EN6 reversed the decrease in the 3BDO-induced autophagy and aggravated the seizures and cognitive dysfunction in the epileptic mice. 3BDO regulates autophagy by activating the mTOR signaling pathway in PTZ-kindled epileptic mice model, thereby alleviating hippocampus neuronal loss and astrocytes proliferation, reducing seizures and effectively improving cognitive function. Therefore, 3BDO may have potential value in the treatment of epilepsy.

Rapamycin protects chondrocytes against IL-18-induced apoptosis and ameliorates rat osteoarthritis

Aging (Albany NY) 2020 Mar 17;12(6):5152-5167.PMID:32182210DOI:10.18632/aging.102937.

Interleukin 18 (IL-18) promotes inflammation and apoptosis in chondrocytes, thereby contributing to the development and progression of osteoarthritis (OA). Here, we investigated the effects of IL-18 treatment and inhibition in rat chondrocytes in vitro and in vivo. We used RT-PCR and Western blotting to measure the mRNA and protein levels of the chondrocyte-specific genes Collagen II and Aggrecan as well as the protein levels of apoptosis-related (Bax, Bcl2, Caspase3/9), autophagy-related (Atg5, Atg7, Beclin1, LC3), and mTOR pathway-related genes (PI3K, Akt, mTOR). We observed a decrease in Collagen II and Aggrecan mRNA and protein levels, upregulation of chondrocyte apoptosis, downregulation of chondrocyte autophagy, and activation of the PI3K/Akt/mTOR pathway upon IL-18 treatment. PI3K/Akt/mTOR pathway activation and inhibition tests using rat 740Y-P (PI3K activator), SC79 (AKT activator), 3BDO (mTOR activator), or LY294002 (PI3K inhibitor) revealed that activation of the PI3K/Akt/mTOR pathway enhances chondrocyte-specific gene degradation induced by IL-18, while its inhibition has protective effects on chondrocytes. We also found that treatment with rapamycin (a selective mTOR inhibitor) also exerts chondro-protective effects that ameliorate OA by promoting autophagy. These results suggest that inhibition of the mTOR pathway could be exploited for therapeutic benefits in the treatment of OA.

Long noncoding RNA CA7-4 promotes autophagy and apoptosis via sponging MIR877-3P and MIR5680 in high glucose-induced vascular endothelial cells

Autophagy 2020 Jan;16(1):70-85.PMID:30957640DOI:10.1080/15548627.2019.1598750.

Vascular endothelial cells (VECs) that form the inner wall of blood vessels can be injured by high glucose-induced autophagy and apoptosis. Although the role of long noncoding RNA in regulating cell fate has received widespread attention, long noncoding RNAs (lncRNAs) that can both regulate autophagy and apoptosis need to be discovered. In this study, we identified that a small chemical molecule, 3-benzyl-5-([2-nitrophenoxy] methyl)-dihydrofuran-2(3H)-one (3BDO), synthesized by us, could inhibit VEC autophagy and apoptosis induced by a high concentration of glucose. To find new lncRNAs that regulate autophagy and apoptosis in VECs, we performed lncRNA microarray analysis. We found and verified an upregulated lncRNA named CA7-4 that was induced by a high concentration of glucose could be downregulated by 3BDO most obviously among all of the detected lncRNAs. Meanwhile, we investigated the mechanism of CA7-4 in regulating VEC autophagy and apoptosis. The results showed that CA7-4 facilitated endothelial autophagy and apoptosis as a competing endogenous RNA (ceRNA) by decoying MIR877-3P and MIR5680. Further study elucidated that MIR877-3P could trigger the decrease of CTNNBIP1 (catenin beta interacting protein 1) by combining with its 3' UTR and then upregulating CTNNB1 (catenin beta 1); MIR5680 inhibited the phosphorylation of AMP-activated protein kinase (AMPK) by targeting and decreasing DPP4 (dipeptidyl peptidase 4). Therefore, CA7-4, MIR877-3P and MIR5680 represent new signal pathways that regulate VEC autophagy and apoptosis under the high-glucose condition.Abbreviations: 3BDO: 3-benzyl-5-([2-nitrophenoxy] methyl)-dihydrofuran-2(3H)-one; 3' UTR: 3' untranslated region; AGO2: argonaute RISC catalytic component 2; AMPK: AMP-activated protein kinase/protein kinase AMP-activated; BAX/BCL2L4: BCL2 associated X, apoptosis regulator; BCL2: BCL2 apoptosis regulator; CASP3: caspase 3; ceRNA: competing endogenous RNA; CTNNB1: catenin beta 1; CTNNBIP1/ICAT: catenin beta interacting protein 1; DPP4: dipeptidyl peptidase 4; FGF2/FGF-2: fibroblast growth factor 2; HG: high concentration glucose (30 mM glucose); lncRNA: long noncoding RNA; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; miRNA: microRNA; MIR4778-3P: microRNA 4778-3p; MIR561-3P: microRNA 561-3p; MIR5680: microRNA 5680; MIR877-3P: microRNA 877-3p; MTOR: mechanistic target of rapamycin kinase; Mut: mutant; NC: negative control; NG: normal concentration glucose (5.5 mM glucose); PARP1: poly(ADP-ribose) polymerase 1; qPCR: quantitative real-time PCR; RNA-FISH: RNA-fluorescence in situ hybridization; ROS: reactive oxygen species; RT-PCR: reverse transcription polymerase chain reaction; siRNA: small interfering RNA; SQSTM1: sequestosome 1; TGFB2-OT1: TGFB2 overlapping transcript 1; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling; VECs: vascular endothelial cells; WT: wild type.

Curcumin alleviates diabetic nephropathy via inhibiting podocyte mesenchymal transdifferentiation and inducing autophagy in rats and MPC5 cells

Pharm Biol 2019 Dec;57(1):778-786.PMID:31741405DOI:10.1080/13880209.2019.1688843.

Context: Curcumin could ameliorate diabetic nephropathy (DN), but the mechanism remains unclear.Objective: The efficacy of curcumin on epithelial-to-mesenchymal transition (EMT) of podocyte and autophagy in vivo and in vitro was explored.Materials and methods: Thirty male Sprague-Dawley rats were divided into the normal, model and curcumin (300 mg/kg/d, i.g., for 8 weeks) groups. Rats received streptozotocin (50 mg/kg, i.p.) and high-fat-sugar diet to induce DN. Biochemical indicators and histomorphology of renal tissues were observed. In addition, cultured mouse podocytes (MPC5) was induced to EMT with serum from DN rats, and then exposed to curcumin (40 µM) with or without fumonisin B1, an Akt specific activator or 3BDO, the mTOR inducer. Western blot analysed the levels of EMT and autophagy associated proteins.Results: Administration of curcumin obviously reduced the levels of blood glucose, serum creatinine, urea nitrogen and urine albumen (by 28.4, 37.6, 33.5 and 22.4%, respectively), and attenuated renal histomorphological changes in DN rats. Podocytes were partially fused and autophagic vacuoles were increased in curcumin-treated rats. Furthermore, curcumin upregulated the expression of E-cadherin and LC3 proteins and downregulated the vimentin, TWIST1, p62, p-mTOR, p-Akt and P13K levels in DN rats and MPC5 cells. However, fumonisin B1 or 3BDO reversed the effects of curcumin on the expression of these proteins in cells.Discussion and conclusions: The protection against development of DN by curcumin treatment involved changes in inducing autophagy and alleviating podocyte EMT, through the PI3k/Akt/mTOR pathway, providing the scientific basis for further research and clinical applications of curcumin.