Home>>Lipids>> Glycerophospholipids>>(2S)-OMPT

(2S)-OMPT

目录号 : GC41692

A selective LPA3 receptor agonist

(2S)-OMPT Chemical Structure

Cas No.:1217471-69-6

规格 价格 库存 购买数量
500μg
¥976.00
现货
1mg
¥1,850.00
现货
5mg
¥7,813.00
现货
10mg
¥13,671.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Lysophosphatidic acid (LPA) is a potent lipid mediator that elicits its effect through four distinct receptors - LPA1/EDG-2, LPA2/EDG-4, LPA3/EDG-7 and LPA4/GPR23. OMPT is a selective agonist of the lysophosphatidic acid 3 (LPA3) receptor. It exhibits EC50 values of 68 nM and >6.8 µM for calcium mobilization in LPA1 and LPA2-expressing Sf9 cells, respectively. The (2S)-OMPT enantiomer is 5- to 20-fold more active than (2R)-OMPT in calcium release assays in both LPA3-transfected Sf9 and rat hepatoma Rh7777 cells.

Chemical Properties

Cas No. 1217471-69-6 SDF
Canonical SMILES O=C(OC[C@H](OC)COP(O)(O)=S)CCCCCCC/C=C\CCCCCCCC
分子式 C22H43O6PS•2(C2H5)3N 分子量 669
溶解度 DMF: 30 mg/ml,DMSO: 30 mg/ml,Ethanol: 30 mg/ml,PBS (pH 7.2): 10 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.4948 mL 7.4738 mL 14.9477 mL
5 mM 0.299 mL 1.4948 mL 2.9895 mL
10 mM 0.1495 mL 0.7474 mL 1.4948 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Lysophosphatidic Acid Receptor 3 Suppress Neutrophil Extracellular Traps Production and Thrombosis During Sepsis

Front Immunol 2022 Apr 7;13:844781.PMID:35464399DOI:10.3389/fimmu.2022.844781.

Sepsis consists of life-threatening organ dysfunction resulting from a dysregulated response to infection. Recent studies have found that excessive neutrophil extracellular traps (NETs) contribute to the pathogenesis of sepsis, thereby increasing morbidity and mortality. Lysophosphatidic acid (LPA) is a small glycerophospholipid molecule that exerts multiple functions by binding to its receptors. Although LPA has been functionally identified to induce NETs, whether and how LPA receptors, especially lysophosphatidic acid receptor 3 (LPA3), play a role in the development of sepsis has never been explored. A comprehensive understanding of the impact of LPA3 on sepsis is essential for the development of medical therapy. After intraperitoneal injection of lipopolysaccharide (LPS), Lpar3-/-mice showed a substantially higher mortality, more severe injury, and more fibrinogen content in the lungs than wild-type (WT) mice. The values of blood coagulation markers, plasma prothrombin time (PT) and fibrinogen (FIB), indicated that the Lpar3-/- mice underwent a severe coagulation process, which resulted in increased thrombosis. The levels of NETs in Lpar3-/- mice were higher than those in WT mice after LPS injection. The mortality rate and degree of lung damage in Lpar3-/- mice with sepsis were significantly reduced after the destruction of NETs by DNaseI treatment. Furthermore, in vitro experiments with co-cultured monocytes and neutrophils demonstrated that monocytes from Lpar3-/- mice promoted the formation of NETs, suggesting that LPA3 acting on monocytes inhibits the formation of NETs and plays a protective role in sepsis. Mechanistically, we found that the amount of CD14, an LPS co-receptor, expressed by monocytes in Lpar3-/-mice was significantly elevated after LPS administration, and the MyD88-p65-NFκB signaling axis, downstream of toll-like receptor 4 signaling, in monocytes was overactivated. Finally, after an injection of the LPA3 agonist (2S)-1-oleoyl-2-methylglycero-3-phosphothionate (OMPT), the survival rate of mice with sepsis was improved, organ damage was reduced, and the production of NETs was decreased. This suggested the possible translational value and application prospects of (2S)-OMPT in the treatment of sepsis. Our study confirms an important protective role of LPA3 in curbing the development of sepsis by suppressing NETs production and thrombosis and provides new ideas for sepsis treatment strategies.

Effects of lysophosphatidic acid (LPA) receptor-2 (LPA2) and LPA3 on the regulation of chemoresistance to anticancer drug in lung cancer cells

Cell Signal 2020 May;69:109551.PMID:32006610DOI:10.1016/j.cellsig.2020.109551.

Lysophosphatidic acid (LPA) mediates a variety of biological functions via the binding of G protein-coupled LPA receptors (LPA receptor-1 (LPA1) to LPA6). This study aimed to investigate the roles of LPA2 and LPA3 in the modulation of chemoresistance to anticancer drug in lung cancer A549 cells. In cell survival assay, cells were treated with cisplatin (CDDP) every 24 h for 2 days. The cell survival rate to CDDP of A549 cells was significantly elevated by an LPA2 agonist, GRI-977143. To evaluate the roles of LPA2-mediated signaling in cell survival during tumor progression, highly migratory (A549-R10) cells were generated from A549 cells. In the presence of GRI-977143, the cell survival rate to CDDP of A549-R10 cells were markedly higher than that of A549 cells, correlating with LPAR2 expression level. Moreover, to assess the effects of long-term anticancer drug treatment on cell survival, the long-term CDDP treated (A549-CDDP) cells were established from A549 cells. The cell survival rate to CDDP of A549-CDDP cells was elevated by GRI-977143. Since LPAR3 expression level was significantly higher in A549-CDDP cells than in A549 cells, we investigated the roles of LPA3 in the cell survival to CDDP of A549 cells, using an LPA3 agonist, 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate ((2S)-OMPT). The cell survival rate to CDDP of A549 cells was significantly reduced by (2S)-OMPT treatment. In the presence of (2S)-OMPT, the cell survival rate to CDDP of A549 cells was elevated by LPA3 knockdown. These results suggest that LPA signaling via LPA2 and LPA3 is involved in the regulation of chemoresistance in A549 cells treated with CDDP.

Roles of endothelial cells in the regulation of cell motility via lysophosphatidic acid receptor-2 (LPA2) and LPA3 in osteosarcoma cells

Exp Mol Pathol 2021 Feb;118:104596.PMID:33347862DOI:10.1016/j.yexmp.2020.104596.

Lysophosphatidic acid (LPA) signaling via LPA receptors (LPA1 to LPA6) exhibits a variety of biological responses. In tumor microenvironment, endothelial cells promote cancer cell functions. In this study, we investigated the roles of endothelial cells in the regulation of cell motile activity via LPA2 and LPA3 in human osteosarcoma MG-63 cells. In cell motility assay, the cell motile activity of MG-63 cells was markedly increased by the supernatants of endothelial F2 cells. MG-63 cell motility elevated by the supernatants was enhanced by GRI-977143 (LPA2 agonist) and reduced by (2S)-OMPT (LPA3 agonist). LPAR2 and LPAR3 expressions were increased in highly migratory MG63-CR7(F2) cells, which were generated from MG-63 cells by co-culture with F2 cell supernatants. MG63-CR7(F2) cell motility was stimulated by LPA treatment. In the presence of F2 cell supernatants, MG63-CR7(F2) cell motility was markedly enhanced by GRI-977143 and suppressed by (2S)-OMPT. Autotaxin (ATX) enzymatically converts lysophosphatidylcholine (LPC) to LPA. ATX expression was higher in MG63-CR(F2) cells than in MG-63 cells. MG63-CR7(F2) cell motility was markedly increased by LPC in comparison with MG-63 cells. In addition, MG63-CR(F2) cell motility was significantly stimulated by the supernatants of LPC treated F2 cells. The present results suggest that the activation of LPA signaling via LPA2 and LPA3 by endothelial cells is involved in the modulation of cell motile activity of MG-63 cells.

Enantioselective responses to a phosphorothioate analogue of lysophosphatidic acid with LPA3 receptor-selective agonist activity

J Med Chem 2003 Dec 18;46(26):5575-8.PMID:14667211DOI:10.1021/jm034207p.

The metabolically stabilized LPA analogue, 1-oleoyl-2-O-methyl-rac-glycerophosphothioate (OMPT), is a potent agonist for the LPA(3) G-protein-coupled receptor. A new enantiospecific synthesis of both (2R)-OMPT and (2S)-OMPT is described. Calcium release assays in both LPA(3)-transfected insect Sf9 and rat hepatoma Rh7777 cells showed that (2S)-OMPT was 5- to 20-fold more active than (2R)-OMPT. Similar results were found for calcium release, MAPK and Akt activation, and IL-6 release in human OVCAR3 ovarian cancer cells.

The synergistic effects of lysophosphatidic acid receptor agonists and calcitriol on MG63 osteoblast maturation at titanium and hydroxyapatite surfaces

Biomaterials 2010 Jan;31(2):199-206.PMID:19796809DOI:10.1016/j.biomaterials.2009.09.035.

Successful osseointegration stems from the provision of a mechanically competent mineralised matrix at the implant site. Mature osteoblasts are the cells responsible for achieving this and a key factor for ensuring healthy bone tissue is associated with prosthetic materials will be 1 alpha,25 dihydroxy vitamin D3 (calcitriol). However it is known that calcitriol per se does not promote osteoblast maturation, rather the osteoblasts need to be in receipt of calcitriol in combination with selected growth factors in order to undergo a robust maturation response. Herein we report how agonists of the lysophosphatidic acid (LPA) receptor, LPA and (2S)-OMPT, synergistically co-operate with calcitriol to secure osteoblast maturation for cells grown upon two widely used bone biomaterials, titanium and hydroxyapatite. Efforts could now be focussed on functionalizing these materials with LPA receptor agonists to support in vivo calcitriol-induced osseointegration via heightened osteoblast maturation responses.