Home>>Signaling Pathways>> Others>> Others>>2-Ethoxybenzamide (Ethenzamide)

2-Ethoxybenzamide (Ethenzamide) Sale

(Synonyms: 2-乙氧基苯甲酰胺; Ethenzamide) 目录号 : GC33542

2-Ethoxybenzamide (Ethenzamide) is a common analgesic and anti-inflammatory drug that is used for the relief of fever, headaches, and other minor aches and pains.

2-Ethoxybenzamide (Ethenzamide) Chemical Structure

Cas No.:938-73-8

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥491.00
现货
1g
¥446.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

2-Ethoxybenzamide (Ethenzamide) is a common analgesic and anti-inflammatory drug that is used for the relief of fever, headaches, and other minor aches and pains.

Chemical Properties

Cas No. 938-73-8 SDF
别名 2-乙氧基苯甲酰胺; Ethenzamide
Canonical SMILES O=C(N)C1=CC=CC=C1OCC
分子式 C9H11NO2 分子量 165.19
溶解度 DMSO : ≥ 47 mg/mL (284.52 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 6.0536 mL 30.2682 mL 60.5364 mL
5 mM 1.2107 mL 6.0536 mL 12.1073 mL
10 mM 0.6054 mL 3.0268 mL 6.0536 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Ethenzamide-gentisic acid-acetic acid (2/1/1)

Acta Crystallogr Sect E Struct Rep Online 2010 Apr 10;66(Pt 5):o1045-6.PMID:21579106DOI:10.1107/S1600536810012407.

In the title co-crystal solvate, 2-ethoxy-benzamide-2,5-dihydroxy-benzoic acid-ethanoic acid (2/1/1), 2C(9)H(11)NO(2)·C(7)H(6)O(4)·C(2)H(4)O(2), two nonsteroidal anti-inflammatory drugs, Ethenzamide (systematic name: 2-ethoxy-benzamide) and gentisic acid (systematic name: 2,5-dihydroxy-benzoic acid), together with acetic acid (systematic name: ethanoic acid) form a four-component mol-ecular assembly held together by N-H⋯O and O-H⋯O hydrogen bonds. This assembly features two symmetry-independent mol-ecules of Ethenzamide, forming supra-molecular acid-amide heterosynthons with gentisic acid and acetic acid. These heterosynthons involve quite strong O-H⋯O [O⋯O = 2.5446 (15) and 2.5327 (15) Å] and less strong N-H⋯O [N⋯O = 2.9550 (17) and 2.9542 (17) Å] hydrogen bonds. The overall crystal packing features several C-H⋯O and π-π stacking inter-actions [centroid-centroid distance = 3.7792 (11) Å].

2-Ethoxybenzamide stimulates melanin synthesis in B16F1 melanoma cells via the CREB signaling pathway

Mol Cell Biochem 2016 Dec;423(1-2):39-52.PMID:27633503DOI:10.1007/s11010-016-2823-x.

Non-steroidal anti-inflammatory drugs are frequently used for the treatment of inflammation, pain, and fever. In this study, we found that 2-Ethoxybenzamide (ETZ) significantly enhanced melanin synthesis in B16F1 melanoma cells, and also induced melanosome formation. Therefore, we investigated the mechanism by which ETZ up-regulated melanin synthesis. Western blot analysis demonstrated that ETZ increased melanogenic protein levels, except that for TRP-2. Moreover, semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR analyses showed that ETZ enhanced the mRNA levels of melanogenic genes, including microphthalmia-associated transcription factor and melanocortin 1 receptor. We also observed phosphorylation of cAMP response element-binding protein (CREB) following ETZ treatment. However, ETZ did not affect intracellular cAMP levels. ERK was also activated by ETZ treatment, and melanin content was enhanced upon treatment with the specific ERK inhibitor PD98059. Together, our results indicate that ETZ induces melanin synthesis via CREB phosphorylation.

Propensity of salicylamide and Ethenzamide cocrystallization with aromatic carboxylic acids

Eur J Pharm Sci 2016 Mar 31;85:132-40.PMID:26898408DOI:10.1016/j.ejps.2016.02.010.

The cocrystallization of salicylamide (2-hydroxybenzamide, SMD) and Ethenzamide (2-Ethoxybenzamide, EMD) with aromatic carboxylic acids was examined both experimentally and theoretically. The supramolecular synthesis taking advantage of the droplet evaporative crystallization (DEC) technique was combined with powder diffraction and vibrational spectroscopy as the analytical tools. This led to identification of eleven new cocrystals including pharmaceutically relevant coformers such as mono- and dihydroxybenzoic acids. The cocrystallization abilities of SMD and EMD with aromatic carboxylic acids were found to be unexpectedly divers despite high formal similarities of these two benzamides and ability of the R2,2(8) heterosynthon formation. The source of diversities of the cocrystallization landscapes is the difference in the stabilization of possible conformers by adopting alternative intramolecular hydrogen boding patterns. The stronger intramolecular hydrogen bonding the weaker affinity toward intermolecular complexation potential. The substituent effects on R2,2(8) heterosynthon properties are also discussed.

Herringbone array of hydrogen-bonded ribbons in 2-Ethoxybenzamide from high-resolution X-ray powder diffraction

Acta Crystallogr C 2009 Nov;65(Pt 11):o583-6.PMID:19893241DOI:10.1107/S0108270109040803.

In 2-Ethoxybenzamide, C(9)H(11)NO(2), the amide substituents are linked into centrosymmetric head-to-head hydrogen-bonded dimers. Additional hydrogen bonds between adjacent dimers give rise to ribbon-like packing motifs, which extend along the c axis and possess a third dimension caused by twisting of the 2-ethoxyphenyl substituent with respect to the hydrogen-bonded amide groups. The ribbons are arranged in a T-shaped herringbone pattern and cohesion between them is achieved by van der Waals forces.

Auxiliary-directed etherification of sp2 C-H bonds under heterogeneous metal-organic framework catalysis: synthesis of Ethenzamide

RSC Adv 2018 Jan 16;8(5):2829-2836.PMID:35541499DOI:10.1039/c7ra12010a.

An efficient protocol for 8-aminoquinoline assisted alkoxylation and phenoxylation of sp2 C-H bonds under heterogeneous catalysis was developed. The optimal conditions employed Cu-MOF-74 (20%), K2CO3 base, pyridine ligand or dimethyl formamide solvent, and O2 oxidant at 80 °C or 100 °C for 24 hours. Cu-MOF-74 revealed remarkably higher activity when compared with other previously commonly used Cu-MOFs in cross coupling reactions, supported copper catalysts, and homogeneous copper salts. The reaction scope with respect to coupling partners included a wide range of various substrates. Interestingly, the developed conditions are applicable for the synthesis of high-profile relevant biological agents from easily accessible starting materials. Furthermore, a leaching test confirmed the reaction heterogeneity and the catalyst was reused and recycled at least 8 times with trivial degradation in activity.